Percolation et simulation de Monte-Carlo

Modérateur : Michel Quercia

Répondre
Lily1998
Messages : 115
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Percolation et simulation de Monte-Carlo

Message par Lily1998 » dim. sept. 03, 2017 9:21 am

Bonjour,

Je travaille actuellement sur la percolation pour mon TIPE, et en effectuant diverses recherches, j'ai lu de nombreuses fois qu'on pouvait simuler une expérience de percolation à l'aide du modèle de Monte-Carlo. Cependant, les sites sur lesquels j'ai vu cela n'expliquent pas tellement l'intérêt et le principe de cette méthode...

Quelqu'un pourrait-il m'expliquer en quoi consiste ce modèle ? Et en quoi il peut être intéressant vis-à-vis de la percolation ?

Merci et bonne journée

Avatar du membre
bullquies
Messages : 6017
Enregistré le : mar. avr. 17, 2012 9:19 pm
Classe : Thé à la

Re: Percolation et simulation de Monte-Carlo

Message par bullquies » dim. sept. 03, 2017 9:34 am

.
Modifié en dernier par bullquies le dim. sept. 03, 2017 12:59 pm, modifié 1 fois.
Ginette, the best a man can get

Lily1998
Messages : 115
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Re: Percolation et simulation de Monte-Carlo

Message par Lily1998 » dim. sept. 03, 2017 10:00 am

Bien sûr !
Il y a celui-ci : http://www.f-legrand.fr/scidoc/docimg/s ... ising.html
Et celui-là : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3778213/
Et également la page 4 de cet ADS : https://www.scei-concours.fr/tipe/TIPE_ ... QUE_PC.pdf


Je ne sais pas si c'est vraiment à mon niveau, mais j'ai un peu de mal à comprendre...

Un de mes objectifs est d'étudier expérimentalement et numériquement les propriétés conductrices ou isolantes d'une grille composée de billes à la fois conductrices et isolantes, pour voir à partir de quel seuil le courant traverse la grille. Et donc pour la simulation numérique, je pensais créer une matrice remplie aléatoirement (mais avec une probabilité p d'avoir une bille conductrice) de 0 et de 1.

D'après ce que j'ai compris, Monte-Carlo permet de simuler numériquement un grand nombre de configurations, en faisant varier les états des cases de la grille. Mais je ne comprends pas vraiment le principe...

Avatar du membre
Syl20
Messages : 1601
Enregistré le : sam. janv. 16, 2016 4:51 pm
Classe : MPSI

Re: Percolation et simulation de Monte-Carlo

Message par Syl20 » dim. sept. 03, 2017 10:42 am

Le principe de Monte-Carlo ici, c'est de rajouter des ouvertures jusqu'à ce que tu aies des clusters infinis (ie de haut en bas) qui apparaissent ; quand un cluster apparaît, tu notes la proportion d'ouvertures dans ta grille, et en faisant une très grande grille, tu vas obtenir une approximation de p2site ;)
2016-2018 : Louis-le-Grand MPSI-MP*

Lily1998
Messages : 115
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Re: Percolation et simulation de Monte-Carlo

Message par Lily1998 » dim. sept. 03, 2017 10:49 am

Des ouvertures, c'est-à-dire ? Des cases avec l'état bille isolante ?
Et du coup cela donne une approximation du seuil critique à partir duquel on a au moins un cluster infini ?

Avatar du membre
bullquies
Messages : 6017
Enregistré le : mar. avr. 17, 2012 9:19 pm
Classe : Thé à la

Re: Percolation et simulation de Monte-Carlo

Message par bullquies » dim. sept. 03, 2017 11:01 am

.
Modifié en dernier par bullquies le dim. sept. 03, 2017 12:59 pm, modifié 1 fois.
Ginette, the best a man can get

Lily1998
Messages : 115
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Re: Percolation et simulation de Monte-Carlo

Message par Lily1998 » dim. sept. 03, 2017 11:06 am

Merci bullquies, c'est exactement cette méthode que je voulais mettre en œuvre, mais je me demandais justement en quoi la méthode de Monte-Carlo était différente, parce que ça ne me semblait pas clair...

Je vais rester sur le RSA dans ce cas, c'est la méthode qui me semblait la plus intuitive, et j'aurai déjà pas mal de choses intéressantes à faire, inutile de me compliquer la vie :)

Merci beaucoup pour votre aide !

Avatar du membre
Syl20
Messages : 1601
Enregistré le : sam. janv. 16, 2016 4:51 pm
Classe : MPSI

Re: Percolation et simulation de Monte-Carlo

Message par Syl20 » dim. sept. 03, 2017 11:30 am

Lily1998 a écrit :
dim. sept. 03, 2017 10:49 am
Des ouvertures, c'est-à-dire ? Des cases avec l'état bille isolante ?
Et du coup cela donne une approximation du seuil critique à partir duquel on a au moins un cluster infini ?
C'est à dire que dans ton carré n×n de simulation, au départ tous tes sites sont "fermés" puis on choisit de manière aléatoire d'en ouvrir. Si tu préfères, au départ il y a n² billes isolantes et après on change de manière aléatoire une bille isolante en une bille conductrice, un peu comme ça : https://m.youtube.com/watch?v=xUWuZjadbbQ
Comme ce que vous appelez RSA, ça donne si tu itères la probabilité critique de percolation, qui est en effet la probabilité au-delà de laquelle on a (presque sûrement) un cluster infini (il me semble avoir vu qu'il était unique d'ailleurs)
Je ne sais pas exactement si cette méthode est plus avantageuse : à voir en terme de complexité pour les deux méthodes, sachant qu'en réduisant la complexité, tu pourras utiliser une plus grande grille et donc augmenter la précision de ton calcul
2016-2018 : Louis-le-Grand MPSI-MP*

Lily1998
Messages : 115
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Re: Percolation et simulation de Monte-Carlo

Message par Lily1998 » dim. sept. 03, 2017 11:51 am

Merci beaucoup, c'est beaucoup plus clair à présent ! Donc au lieu de partir d'une grille déjà remplie aléatoirement de 0 et de 1, on part d'une grille remplie totalement de 0 et on change aléatoirement un 0 en 1 jusqu'à obtenir un cluster infini.
C'est une bonne idée en effet de comparer les complexités. Je vais déjà essayer de coder le RSA, et voir ensuite si Monte-Carlo apporte une meilleure complexité.

Merci !

Avatar du membre
fakbill
Messages : 11041
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Percolation et simulation de Monte-Carlo

Message par fakbill » mar. sept. 12, 2017 2:18 pm

"Je travaille actuellement sur la percolation pour mon TIPE, et en effectuant diverses recherches, j'ai lu de nombreuses fois qu'on pouvait simuler une expérience de percolation à l'aide du modèle de Monte-Carlo. Cependant, les sites sur lesquels j'ai vu cela n'expliquent pas tellement l'intérêt et le principe de cette méthode..."

Ben il est assez evident non? On dit que le fluide est disons un gros tas de particules et, à chaque "embranchement" dans le matériau ou tire au hazard la direction. Ca revient à tirer des marches aléatoires et à regarder comment par exemple le rayon de ces marches évolue au cours du temps (ou, pour la percolation, regarder des histoires des seuils perco/pas perco en function de proba de branchement).
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

marcelbombka
Messages : 1
Enregistré le : ven. sept. 22, 2017 11:00 am
Contact :

Re: Percolation et simulation de Monte-Carlo

Message par marcelbombka » ven. sept. 22, 2017 1:09 pm

Cluster size distributions are obtained for the directed percolation problem on a square lattice using Monte Carlo simulation. The critical probability and the critical exponents beta , gamma , tau , phi are determined, and evidence is obtained for a scaling form of the cluster distribution function.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 1 invité