séries entières (en spé)

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Répondre
HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 5:15 pm

Bonjour chers internautes,

j'ai un petit souci: comment fait-on le développement en série entière de f(x)=(x+1)²/(1-x)² ?
J'ai essayé mais je ne vois pas comment se débarrasser du terme en (x+1)². Merci.

siro
Messages : 1186
Enregistré le : dim. mai 01, 2016 8:09 pm
Classe : rue

Re: séries entières (en spé)

Message par siro » jeu. oct. 12, 2017 5:57 pm

Tu développes.
Chaque vénérable chêne a commencé par être un modeste gland. Si on a pensé à lui pisser dessus.

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 6:08 pm

bah oui mais en gros ça fait somme( (n+1)*(x+1)²*x^n). Tu veux dire que on aurait An=(n+1)*(x+1)² ?
Ca parait bizarre...

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 6:09 pm

En développant ça fait juste une somme de sommes. J'ai essayé une réindexation mais ça n'avance à rien...

siro
Messages : 1186
Enregistré le : dim. mai 01, 2016 8:09 pm
Classe : rue

Re: séries entières (en spé)

Message par siro » jeu. oct. 12, 2017 6:11 pm

ça fait 1/(1-x)²+2x//(1-x)²+x²/(1-x)², développé en série entière avec linéarité du DSE.
Après tu bidouilles les coefficients pour définir un gros coefficient global somme de coefficients du DSE de 1/(1-x)², (un truc du genre b_n = a_n + 2a_{n-1} + a_{n-2} comme nouveau coefficient)
Chaque vénérable chêne a commencé par être un modeste gland. Si on a pensé à lui pisser dessus.

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 6:23 pm

ok. du coup j'ai B_n=A_n+2*A_n+x²*A_n

siro
Messages : 1186
Enregistré le : dim. mai 01, 2016 8:09 pm
Classe : rue

Re: séries entières (en spé)

Message par siro » jeu. oct. 12, 2017 6:27 pm

oui et ensuite tu injectes les x et x² dans les x^n de ta série entière, tu décales ensuite les indices pour factoriser par x^n chaque terme

et c'est quoi, a_n ? Comment tu développes la série entière de x -> 1/(1-x)² ? Jvais pas les chercher pour toi.

Ce qu'on te demande, c'est d'arriver après manipulation à une expression du style (1+x)²/(1-x)² = \sum b_n x^n où tu dois expliciter b_n en fonction de n. Manipule les termes comme tu veux pour y arriver.
Chaque vénérable chêne a commencé par être un modeste gland. Si on a pensé à lui pisser dessus.

JeanN
Messages : 4667
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: séries entières (en spé)

Message par JeanN » jeu. oct. 12, 2017 6:33 pm

Sinon, tu peux nommer les coeffs de ton DSE (existence garantie par les théorèmes du cours)
Puis tu écris (1-x)^2 = (1+x)^2 * sum(a_n x^n , n=0.. infinity)
tu développes, tu invoques l'unicité des coefficients d'une série entière et tu récupères sans trop de problème an en fonction de n

Indication : le résultat final est très simple.
Professeur de maths MPSI Lycée Sainte-Geneviève

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 6:35 pm

ok merci. du coup j'ai sum(n>=1) 4n*x^n +1 mais comment se débarrasser du +1?

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 6:38 pm

pour dvp la SE de 1/(1-x)^2 j'ai utilisé le thm de Cauchy. a_n=n+1

JeanN
Messages : 4667
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: séries entières (en spé)

Message par JeanN » jeu. oct. 12, 2017 7:50 pm

HassanElMekh a écrit :
jeu. oct. 12, 2017 6:35 pm
ok merci. du coup j'ai sum(n>=1) 4n*x^n +1 mais comment se débarrasser du +1?
Pourquoi voudrais tu te débarrasser du +1 ??
Professeur de maths MPSI Lycée Sainte-Geneviève

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » jeu. oct. 12, 2017 8:17 pm

pour trouver une SE sous la forme sum a_n*x_n

JeanN
Messages : 4667
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: séries entières (en spé)

Message par JeanN » jeu. oct. 12, 2017 9:31 pm

Ben tu poses a0=1 et an=4*n pour n>=1 : tu n'as pas trop le choix.
Professeur de maths MPSI Lycée Sainte-Geneviève

HassanElMekh
Messages : 16
Enregistré le : lun. oct. 09, 2017 9:52 pm
Classe : psi

Re: séries entières (en spé)

Message par HassanElMekh » ven. oct. 13, 2017 8:53 am

ok merci

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Bing [Bot] et 5 invités