Marquage

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Répondre
levaus
Messages : 4
Enregistré le : jeu. août 03, 2017 3:16 pm
Classe : M2

Marquage

Message par levaus » jeu. janv. 18, 2018 5:06 pm

Bonjour,

Soit $ M $ une variable aléatoire entière, $ X_{i} $ une suite (non idd a priori) à valeurs dans un ensemble mesuré $ E $ et $ Y_{i} $ une suite iid à valeurs dans un ensemble mesuré $ F $; on note $ \nu $ la loi commune. On suppose les $ Y_{i} $ indépendantes de $ M $ et des $ X_{i} $.

Comment montrer que $ \mathbb{E}(\exp(-\sum_{i = 1}^{M} f(X_{i}, Y_{i}) | \sigma(M, X_{i}))) = \exp (-\sum_{i = 1}^{M} g(X_{i})) $ où $ g(x) = ln(\int_{F}\exp(-f(x, y)) d\nu(y)) $?

Avatar du membre
Hibiscus
Messages : 1637
Enregistré le : ven. oct. 27, 2017 10:55 am
Classe : Bac a fleurs

Re: Marquage

Message par Hibiscus » jeu. janv. 18, 2018 5:54 pm

C'est (presque un peu trop) difficile pour un taupin, comme tu peux t'en douter (pour le(la)quel(le), ne serait-ce que la notion de mesure n'est pas au programme)...

Même si Dattier&co vont peut être s'amuser à chercher la réponse, pourquoi ne pas aller sur math.stackexchange.com et autres ?

(un peu comme les deux posts précédents ?)
Lycée Masséna (Pcsi-PC*) -- École polytechnique
Université de Tokyo | Tohoku - Thèse (Astrophysique)

Avatar du membre
bullquies
Messages : 6618
Enregistré le : mar. avr. 17, 2012 9:19 pm
Classe : Thé à la

Re: Marquage

Message par bullquies » jeu. janv. 18, 2018 6:13 pm

Bonjour

par ailleurs vu la différence des notations qu'on peut trouver partout, il n'est pas inutile de rappeler ce que veut dire celles que tu utilises ($ \sigma(M, X_i) $ ne me dit rien par exemple)
The Axiom of Choice is obviously true, the Well-Ordering Principle is obviously false, and nobody knows about Zorn's Lemma. - Jerry Bona

levaus
Messages : 4
Enregistré le : jeu. août 03, 2017 3:16 pm
Classe : M2

Re: Marquage

Message par levaus » jeu. janv. 18, 2018 6:17 pm

J'avais oublié que le forum était pour les prépas, j'ai aussi posté sur mathématiques.net.

@bullquies: c'est la tribu engendrée par les M, Xi

Avatar du membre
U46406
Messages : 8677
Enregistré le : mer. juil. 27, 2016 7:38 pm
Classe : shadow CCO nobo CMT
Contact :

Re: Marquage (cours de niveau Master M2)

Message par U46406 » jeu. janv. 18, 2018 6:40 pm

> Classe : M2
Ah oui...
« Occupez-vous d’abord des choses qui sont à portée de main. Rangez votre chambre avant de sauver le monde. Ensuite, sauvez le monde. » (Ron Padgett, dans Comment devenir parfait) :mrgreen:

darklol
Messages : 813
Enregistré le : dim. avr. 19, 2015 12:08 am

Re: Marquage

Message par darklol » jeu. janv. 18, 2018 6:47 pm

J’imagine qu’on conditionne par rapport à $ \sigma(M,X_1,...,X_n) $ (tu n’as pas quantifié le $ i $ qui intervient dans la partie conditionnement).

Dans ce cas, ton résultat provient automatiquement d’un résultat plus général: si $ \mathcal{H} $ est une sous-tribu, $ X $ mesurable par rapport à $ \mathcal{H} $, $ Y $ indépendante de $ \mathcal{H} $ alors si $ f $ est une fonction mesurable, on a:
$ \mathbb{E}(f(X,Y)|\mathcal{H}) = h(X) $ où $ h(x) = \mathbb{E}(f(x,Y)) $ (résultat trivial en utilisant la définition de l’espérance conditionnelle).

(PS: si on connaît bien son cours, il n’y a pas lieu de « s’amuser » à chercher la réponse, étant donné qu’elle saute aux yeux).
ENS Lyon
Ingénieur de recherche

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 5 invités