Intégration par parties

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Répondre
lureshall23
Messages : 18
Enregistré le : mar. févr. 06, 2018 11:15 pm
Classe : sup

Intégration par parties

Message par lureshall23 » lun. févr. 12, 2018 11:07 pm

Salut tout le monde, concernant le théorème d'intégration par parties, pourquoi devrons-nous avoir u' et v' continues. Vu que la continuité est utile juste pour nous donner la primitive car toute fonction continue sur un intervalle admet une primitive, on voit que u et v sont elles mêmes des primitives de u' et v'. Merci d'avance. (Je suis en terminale)

JeanN
Messages : 5056
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: Intégration par parties

Message par JeanN » lun. févr. 12, 2018 11:16 pm

C'est essentiellement à cause du "juste" que tu signales.
Professeur de maths MPSI Lycée Sainte-Geneviève

Avatar du membre
Hibiscus
Messages : 1369
Enregistré le : ven. oct. 27, 2017 10:55 am
Classe : Bac a fleurs

Re: Intégration par parties

Message par Hibiscus » lun. févr. 12, 2018 11:18 pm

Réponse fausse, mais mensonge pour un élève de terminale :
Si u' ou v' n'est pas continue sur le segment d'intégration, quand tu as u' ou v' dans l'intégrale, "tu ne peux pas calculer l'intégrale".

Le théorème est vrai avec des hypothèses plus faibles que \( (u,v) \) de classe \( \mathcal{C}^1 \), mais ça appelle des choses un peu au delà de la terminale.
Lycée Masséna (Pcsi-PC*)
École polytechnique (X2015)
Université de Tokyo/Tohoku - Thèse (Astrophysique)

Avatar du membre
fakbill
Messages : 11164
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Intégration par parties

Message par fakbill » mar. févr. 13, 2018 11:02 am

lureshall23 se pose une excellente question.
Quand on a un théorème, il faut toujours se demander ce qui se passe si on vire une hypothèse ou si on l’affaiblit. Dans ce cas…hum….peut-on donner un contre-exemple accessible au niveau terminale ?
Si oui, c’est cool mais ça va être dur car les notions de continuité…ont-ils les outils pour ?
Si non, alors pourquoi s’acharne t on a leur faire apprendre ce théorème avec ces hypothèses ? (j’exagère un peu…)
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Avatar du membre
fakbill
Messages : 11164
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Intégration par parties

Message par fakbill » mar. févr. 13, 2018 11:02 am

Je pensais à un contre exemple dans lequel le résultat de l'intégration par partie est manifestement faux.
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

JeanN
Messages : 5056
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: Intégration par parties

Message par JeanN » mar. févr. 13, 2018 1:08 pm

fakbill a écrit :
mar. févr. 13, 2018 11:02 am
lureshall23 se pose une excellente question.
Quand on a un théorème, il faut toujours se demander ce qui se passe si on vire une hypothèse ou si on l’affaiblit. Dans ce cas…hum….peut-on donner un contre-exemple accessible au niveau terminale ?
Si oui, c’est cool mais ça va être dur car les notions de continuité…ont-ils les outils pour ?
Si non, alors pourquoi s’acharne t on a leur faire apprendre ce théorème avec ces hypothèses ? (j’exagère un peu…)
Si on affaiblit les hypothèses on se retrouve avec une intégrale qui ne rentre pas dans le cadre du programme.
Professeur de maths MPSI Lycée Sainte-Geneviève

darklol
Messages : 801
Enregistré le : dim. avr. 19, 2015 12:08 am

Re: Intégration par parties

Message par darklol » mar. févr. 13, 2018 1:17 pm

Non mais le cadre en terminale c’est l'intégration des fonctions continues, donc on ne peut pas donner de contre-exemple étant donné que le théorème d’IPP est vrai en toute généralité pour les fonctions continues, il faut donc un exemple discontinu, qu’on ne sait pas intégrer en terminale.

D’ailleurs même niveau prépa en étendant aux fonctions continues par morceaux on ne peut pas trouver de contre-exemple (car si une fonction dérivable est à dérivée continue par morceaux, alors en particulier sa dérivée est bornée donc intégrable donc le théorème marche; si la dérivée n’est pas continue par morceaux, on ne sait plus l’intégrer niveau prépa donc on ne peut à nouveau rien dire étant donné que la question n’est même pas bien définie).

Il est donc important de donner l’hypothèse « dérivée continue » aux élèves de terminale étant donné qu’il faut au moins ça pour rester dans le cadre...
ENS Lyon
Ingénieur de recherche

darklol
Messages : 801
Enregistré le : dim. avr. 19, 2015 12:08 am

Re: Intégration par parties

Message par darklol » mar. févr. 13, 2018 1:18 pm

JeanN a été un peu plus concis que moi.
ENS Lyon
Ingénieur de recherche

Avatar du membre
fakbill
Messages : 11164
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Intégration par parties

Message par fakbill » mer. févr. 14, 2018 9:32 pm

ah oui vu comme ça ok :)
C'est juste que ça n'a plus de sens si on affaiblit les hypothèses...pas de bol sur cet exemple.
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

matmeca_mcf1
Messages : 1001
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Intégration par parties

Message par matmeca_mcf1 » jeu. févr. 15, 2018 10:55 pm

Comme tu n'es plus en prépa, cela ne te portera pas préjudice de regarder du hors-programme puisque tu ne vas pas passer les concours. Si tu veux voir ce que cela donne hors programme, tu peux regarder le chapitre sur les espaces de Sobolev en 1D dans le Brezis "Analyse Fonctionnelle" ou le chapitre (ch 5? ch 6) sur la différentiation dans le Walter Rudin "analyse réelle et complexe" (recherche "continuité absolue"). Il suffit d'hypothèses plutôt faibles pour que le résultat tienne.
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'enseirb-matmeca.
Les opinions exprimées ci-dessus n'engagent que moi et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Bing [Bot] et 13 invités