Exo proba kholle

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Jufi
Messages : 12
Enregistré le : mer. nov. 08, 2017 11:40 pm
Classe : Sup PCSI

Exo proba kholle

Message par Jufi » dim. mai 13, 2018 6:58 pm

Bonsoir à tous,
J'essaye de refaire un exercice que j'ai eu en khôlle dernièrement sur les probas et qui m'a pausé problème, je me rend compte qu'il me pose toujours problème :? .
Je viens donc ici pour chercher de l'aide, voici l'énoncer :

On tire simultanément trois boules dans une urne qui en contient 20 numérotées de 1 à 20.
Soit A(k) l'événement : "Le numéro de la boule intermédiaire est égal à k". Calculer P(A(k)) en fonction de k.

Je suis totalement coincé, je pense que chaque tirage a une probabilité de (3 parmis 20) car on tire des groupes de 3 boules mais je ne sais pas où aller. Je me souviens également que le kholleur m'a dit que P(A(1)) = P(A(20)) = 0; cependant je ne comprend pas pourquoi car si on tire trois boules simultanément la boule 1 peut bien se trouver au milieu ou est ce que je me trompe ?

Merci d'avance pour votre aide,
Jufi.

Lily1998
Messages : 274
Enregistré le : jeu. févr. 16, 2017 8:16 pm
Classe : PC*

Re: Exo proba kholle

Message par Lily1998 » dim. mai 13, 2018 7:04 pm

La boule intermédiaire, ici, c'est la boule dont le numéro n'est ni le minimum, ni le maximum des 3 numéros tirés. Donc ça ne peut pas être 1 ou 20.

matmeca_mcf1
Messages : 949
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Exo proba kholle

Message par matmeca_mcf1 » dim. mai 13, 2018 7:18 pm

Probablement intermédiaire signifie qu'on tire trois boules numérotés x, y, z avec x<y<z et la boule intermédiaire est y.
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'enseirb-matmeca.
Les opinions exprimées ci-dessus n'engagent que moi et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

BobbyJoe
Messages : 133
Enregistré le : lun. oct. 16, 2017 10:49 pm

Re: Exo proba kholle

Message par BobbyJoe » dim. mai 13, 2018 7:22 pm

Les boules sont piochées simultanément puis ordonnées.... La boule intermédiaire, celle qui a le numéro médian, ne peut pas être ni $1$, ni $20$ (c'est une question de français?)
Enfin, par un "calcul direct", on a pour tout $k$ appartenant à \( \)$\{1,\ldots,n\},$ \( \)$$\mathbb{P}(A_{k})=\frac{(k-1)(n-k)}{\binom{n}{3}}.$$
Dire que la boule médiane prend la valeur $k$ veut dire que la plus petite boule peut prendre toutes ses valeurs \( \)$\{1,\ldots,k-1\}$ et que la plus grande boule peut prendre toutes ses valeurs dans \( \)$\{k+1,\ldots,n\}.$ Ou si tu préfères, le nombre de $3-$ listes ordonnées à valeurs dans \( \)$\{1,\ldots,n\}$ ayant pour valeur médiane $k$ est \( \)$(k-1)(n-k).$

Jufi
Messages : 12
Enregistré le : mer. nov. 08, 2017 11:40 pm
Classe : Sup PCSI

Re: Exo proba kholle

Message par Jufi » dim. mai 13, 2018 8:27 pm

Re-bonsoir,
Merci beaucoup pour vos réponses qui m'ont bien éclairé ! J'avais effectivement un problème de compréhension de l'énoncé car je n'avais pas saisi que la boule intermédiaire signifiait celle de "numéro" intermédiaire.
Merci BobbyJoe pour ta réponse très détaillée.
Bonne soirée.

1sala23
Messages : 419
Enregistré le : jeu. mars 08, 2018 10:42 pm
Classe : MPSI

Re: Exo proba kholle

Message par 1sala23 » dim. mai 13, 2018 11:30 pm

BobbyJoe a écrit :
dim. mai 13, 2018 7:22 pm
Les boules sont piochées simultanément puis ordonnées.... La boule intermédiaire, celle qui a le numéro médian, ne peut pas être ni $1$, ni $20$ (c'est une question de français?)
Enfin, par un "calcul direct", on a pour tout $k$ appartenant à \( \)$\{1,\ldots,n\},$ \( \)$$\mathbb{P}(A_{k})=\frac{(k-1)(n-k)}{\binom{n}{3}}.$$
Dire que la boule médiane prend la valeur $k$ veut dire que la plus petite boule peut prendre toutes ses valeurs \( \)$\{1,\ldots,k-1\}$ et que la plus grande boule peut prendre toutes ses valeurs dans \( \)$\{k+1,\ldots,n\}.$ Ou si tu préfères, le nombre de $3-$ listes ordonnées à valeurs dans \( \)$\{1,\ldots,n\}$ ayant pour valeur médiane $k$ est \( \)$(k-1)(n-k).$
Bonjour BobbyJoe,

Pourriez vous m'expliquer pourquoi au dénominateur de votre résultat il y a \( \)$${\binom{n}{3}}$$ ?? Je ne me suis pas trop attardé sur l'exercice, mais j'avais trouvé à la place de \( \)$${\binom{n}{3}}$$ 8000 (20^3)
[2015 - 2018] Lycée à Metz
[2018 - 2019] MPSI2 Lycée Louis-Le-Grand

JeanN
Messages : 4986
Enregistré le : dim. sept. 04, 2005 7:27 pm
Localisation : Versailles

Re: Exo proba kholle

Message par JeanN » dim. mai 13, 2018 11:37 pm

Tu pioches 3 boules parmi 20 donc 3 parmi 20 possibilités.
Professeur de maths MPSI Lycée Sainte-Geneviève

1sala23
Messages : 419
Enregistré le : jeu. mars 08, 2018 10:42 pm
Classe : MPSI

Re: Exo proba kholle

Message par 1sala23 » lun. mai 14, 2018 12:19 am

JeanN a écrit :
dim. mai 13, 2018 11:37 pm
Tu pioches 3 boules parmi 20 donc 3 parmi 20 possibilités.
Dit comme ça, effectivement c'est logique ^^, merci :).

Mais du coup, pourriez vous m'expliquer où est ce que je fais une erreur dans mon raisonnement :

On fixe k compris entre 1 et 20 compris, on a donc 1/20 de tomber sur la boule k. Pour que cette boule soit la boule intermédiaire, il faut qu'une des deux autres boules soit compris entre 1 et k-1 (donc il y a k-1 boules qui respectent cette contrainte) et l'autre des deux boules doit être comprise entre k+1 et 20 soit 20-k boules qui respectent cette propriété. On a donc P(A(k))= 1/20 * (k-1)/20 * (20-k)/20 = (k-1)(20-k)/8000

(On peut remplacer 20 par n dans ce que j'ai écris)
[2015 - 2018] Lycée à Metz
[2018 - 2019] MPSI2 Lycée Louis-Le-Grand

Avatar du membre
saysws
Messages : 1257
Enregistré le : ven. mai 06, 2016 2:51 pm
Classe : Sorcier

Re: Exo proba kholle

Message par saysws » lun. mai 14, 2018 12:45 am

Il y a plusieurs choses qui vont pas dans ton raisonnement, déjà tu raisonne en "arrangements" (ou n-uplet) c'est à dire que tu effectue les tirages les uns après les autres, ici ils sont simultanés donc on s'intéresse à des combinaisons.
De plus même avec des arrangements quand tu tire une boule elle n'est plus dedans ce qui ferait du 20*19*18 possibilités, tu ne peux pas tirer à nouveau la boule que tu à déjà tirer ! (les tirages simultanés avec remise c'est pas évident..)
Mais ici l'ordre est quelconque on divise donc par 3! (nombre d'arrangements correspondant à une combinaison de 3 éléments).
Ainsi le nombre total de possibilités est bien 3 parmi n.
Tu l'aura compris, dans ce genre d'exo de proba/dénombrement où tout les tirages sont équiprobables on commence par calculer séparément le nombre de cas qui conviennent et le nombre de cas total.
En faisant le quotient ça devrait être bon (j'ai pas réfléchis à l'exo a part ça :mrgreen:)

Après si t'as jamais entendu parler d'arrangements ou de combinaisons ça doit pas être évident à comprendre, retiens juste que la différence est que les arrangements sont ordonnés (x,y,z), les combinaisons non {x,y,z} (k parmi n = nombre de parties à k élément d'un ensemble de n éléments).
2016-2018 - PCSI 1 / PC*- Champollion
2018- ? - ENS Ulm

1sala23
Messages : 419
Enregistré le : jeu. mars 08, 2018 10:42 pm
Classe : MPSI

Re: Exo proba kholle

Message par 1sala23 » lun. mai 14, 2018 7:04 pm

saysws a écrit :
lun. mai 14, 2018 12:45 am
Il y a plusieurs choses qui vont pas dans ton raisonnement, déjà tu raisonne en "arrangements" (ou n-uplet) c'est à dire que tu effectue les tirages les uns après les autres, ici ils sont simultanés donc on s'intéresse à des combinaisons.
De plus même avec des arrangements quand tu tire une boule elle n'est plus dedans ce qui ferait du 20*19*18 possibilités, tu ne peux pas tirer à nouveau la boule que tu à déjà tirer ! (les tirages simultanés avec remise c'est pas évident..)
Mais ici l'ordre est quelconque on divise donc par 3! (nombre d'arrangements correspondant à une combinaison de 3 éléments).
Ainsi le nombre total de possibilités est bien 3 parmi n.
Tu l'aura compris, dans ce genre d'exo de proba/dénombrement où tout les tirages sont équiprobables on commence par calculer séparément le nombre de cas qui conviennent et le nombre de cas total.
En faisant le quotient ça devrait être bon (j'ai pas réfléchis à l'exo a part ça :mrgreen:)

Après si t'as jamais entendu parler d'arrangements ou de combinaisons ça doit pas être évident à comprendre, retiens juste que la différence est que les arrangements sont ordonnés (x,y,z), les combinaisons non {x,y,z} (k parmi n = nombre de parties à k élément d'un ensemble de n éléments).
Merci de ta réponse, la j'ai très bien compris (après, en me relisant, je me rend compte de l'absurdité postée en étant fatiguée x) je vais éviter de me lancer dans ce type d'exercice passé une certaine heure :lol: )
[2015 - 2018] Lycée à Metz
[2018 - 2019] MPSI2 Lycée Louis-Le-Grand

matmeca_mcf1
Messages : 949
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Exo proba kholle

Message par matmeca_mcf1 » mar. mai 15, 2018 2:37 am

Il n'y a plus les dénombrements au lycée? C'est bizarre de rajouter les probas et d'enlever les dénombrements. Sinon, cela ne changerait rien de faire le calcul avec des arrangements, on rajouterait juste \( 3! \) à la fois au numérateur et au dénominateur.
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'enseirb-matmeca.
Les opinions exprimées ci-dessus n'engagent que moi et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

Avatar du membre
siro
Messages : 3068
Enregistré le : dim. mai 01, 2016 8:09 pm
Classe : Cassandre

Re: Exo proba kholle

Message par siro » mar. mai 15, 2018 12:44 pm

J'ai rien compris au nouveau programme, avec proba continues sans dénombrement. Soit je suis très très con, soit c'est une aberration.
Chaque vénérable chêne a commencé par être un modeste gland. Si on a pensé à lui pisser dessus.

Krik
Messages : 79
Enregistré le : lun. juin 22, 2015 2:11 pm

Re: Exo proba kholle

Message par Krik » mar. mai 15, 2018 12:54 pm

Non, plus de dénombrement au lycée. Les probas au bac consistent à savoir appuyer sur les bonnes touches de la calculatrice (dont la bien nommée binomFdp).

Avatar du membre
siro
Messages : 3068
Enregistré le : dim. mai 01, 2016 8:09 pm
Classe : Cassandre

Re: Exo proba kholle

Message par siro » mar. mai 15, 2018 2:14 pm

je veux quitter cette planète... qui a écrit des programmes aussi cons alors que c'est peut-être LE cours qui est le plus concret/pratique et utile pour les futurs pas scientifiques en filière S ? ET POURQUOI CES FOUTUES PROBA CONTINUES SI ON A PAS LA VERSION DISCRÈTE B*RDEL ?!
Chaque vénérable chêne a commencé par être un modeste gland. Si on a pensé à lui pisser dessus.

matmeca_mcf1
Messages : 949
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Exo proba kholle

Message par matmeca_mcf1 » mar. mai 15, 2018 7:34 pm

Ce n'est pas évident de faire un programme de probas abordable au lycée. C'est pour cela que les dénombrements (combinaisons, arrangements) devraient y être.
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'enseirb-matmeca.
Les opinions exprimées ci-dessus n'engagent que moi et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Google [Bot], s4ndm4n et 7 invités