Limite d'une suite

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Répondre
kalm
Messages : 4
Enregistré le : ven. avr. 29, 2016 3:29 pm

Limite d'une suite

Message par kalm » jeu. avr. 04, 2019 3:57 pm

Soient $ n\in \mathbb{N} $ et $ k\leq n $. On considère la suite de fonctions $ (u_{n,k})_n $ définit sur $ \mathbb{R} $ par $ u_{n,k}(x)=\frac{C_n^ke^{-2kB-x(k(k-1)+(n-k)(n-1-k))}}{\sum_{i=0}^nC_n^ie^{-2iB-x(i(i-1)+(n-i)(n-1-i))}} $ où $ B\in \mathbb{R} $.

Discuter la limite de $ (u_{n,k})_n $ quand $ n $ tend vers l'infini pour tout $ k \leq n $.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 9 invités