Page 1 sur 1

Supplémentarité du noyau et de l’image

Posté : jeu. avr. 04, 2019 5:46 pm
par tarasbulba
Bonjour,
Soit deux espace vectoriel (E,+,•) et (F,+,•) et f une application de E dans F.
Dans quels cas Ker(f)+Im(f)=F ?

Re: Supplémentarité du noyau et de l’image

Posté : jeu. avr. 04, 2019 6:21 pm
par Nabuco
tarasbulba a écrit :
jeu. avr. 04, 2019 5:46 pm
Bonjour,
Soit deux espace vectoriel (E,+,•) et (F,+,•) et f une application de E dans F.
Dans quels cas Ker(f)+Im(f)=F ?
Le Ker(f) c'est un sev de E donc aucune raison pour que cela ait un sens... Eventuellement le cas F=E peut être intéressant.
Pour E=F en dimension fini cela équivaut à Ker(f) inter Im(f) est nul i.e. Ker(f)=Ker(f^2)

Re: Supplémentarité du noyau et de l’image

Posté : jeu. avr. 04, 2019 7:52 pm
par JeanN
tarasbulba a écrit :
jeu. avr. 04, 2019 5:46 pm
Bonjour,
Soit deux espace vectoriel (E,+,•) et (F,+,•) et f une application de E dans F.
Dans quels cas Ker(f)+Im(f)=F ?
Dans très peu de cas vu l’enoncé. Pourquoi poses tu cette question ?

Re: Supplémentarité du noyau et de l’image

Posté : ven. avr. 05, 2019 9:13 pm
par tarasbulba
D'accord merci !
Je demandais car ça m'aurait arrangé dans un exo mais je n'arrivais pas à le prouver.

Re: Supplémentarité du noyau et de l’image

Posté : ven. avr. 05, 2019 9:34 pm
par JeanN
Quel est l'exo ?

Re: Supplémentarité du noyau et de l’image

Posté : dim. avr. 07, 2019 8:55 pm
par Nicolas Patrois
Nabuco a écrit :
jeu. avr. 04, 2019 6:21 pm
Pour E=F en dimension fini cela équivaut à Ker(f) inter Im(f) est nul i.e. Ker(f)=Ker(f^2)
Et à Im(f)=Im(f²) et à Ker(f)⊕Im(f)=E.