Continuité

Un problème, une question, un nouveau théorème ?

Modérateurs : JeanN, Michel Quercia

Répondre
Avatar du membre
Bidoof
Messages : 262
Enregistré le : mar. déc. 29, 2015 1:54 pm
Classe : ancien MP

Continuité

Message par Bidoof » mer. mai 22, 2019 9:35 am

Salut à tous.
$ $
Je bloque sur un exercice, pouvez-vous me donner un coup de main s'il vous plaît ?

Soit $X = \{ x_{1},...,x_{n} \}$ une partie finie de $R^{n}$.
Soit une fonction $w : R^{X} \rightarrow R$. On considère $w^{*} : y \in R^{n} \rightarrow \sup_{x \in X} \{ \langle x,y \rangle - w(x)\}$ puis : $w^{*^{*}} : y \in R^{n} \rightarrow \sup_{z \in R^{n}} \{ \langle z,y \rangle - w^{*}(z)\}$. Voici à présent l'énoncé :
Montrer que $f : u \in \mathbb{R}^{X} \rightarrow (u^{*^{*}})_{|X} \in \mathbb{R}^{X}$ est contiune.


Merci beaucoup, bonne journée.

Avatar du membre
Bidoof
Messages : 262
Enregistré le : mar. déc. 29, 2015 1:54 pm
Classe : ancien MP

Re: Continuité

Message par Bidoof » jeu. mai 23, 2019 10:32 am

Bonjour à tous, j'ai édité pour plus de clarté si quelqu'un est intéressé.

Avatar du membre
Bidoof
Messages : 262
Enregistré le : mar. déc. 29, 2015 1:54 pm
Classe : ancien MP

Re: Continuité

Message par Bidoof » jeu. mai 23, 2019 10:39 am

$ $Ma nouvelle piste pour ce problème est de réfléchir à la proposition suivante : Soit $E$ un $R$ espace vectoriel, si $u \in E \rightarrow g(x,u)$ est continue en $u$ pour tout $x \in R$ alors $\sup_{x\in X} g(x,u)$ est continue.

matmeca_mcf1
Messages : 1507
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Continuité

Message par matmeca_mcf1 » jeu. mai 23, 2019 3:26 pm

Connaissez-vous les fonctions convexes conjuguées?
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'Enseirb-Matmeca (Bordeaux INP)
Les opinions exprimées ci-dessus sont miennes et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 7 invités