Defferentielle

Modérateurs : Quetzalcoatl, VDB

Répondre
Mosalahmoh
Messages : 90
Enregistré le : lun. mars 26, 2018 12:46 am
Classe : Mpsi

Defferentielle

Message par Mosalahmoh » ven. sept. 14, 2018 1:37 am

Salut .Je veux savoir comment déterminer dS et dV
dans un répere donné au cas géneral .Merci

Avatar du membre
Poliakoff
Messages : 297
Enregistré le : mar. juil. 18, 2017 2:16 pm
Classe : PC*
Localisation : Lyon

Re: Defferentielle

Message par Poliakoff » sam. sept. 15, 2018 10:23 am

Est-ce que tu peux définir tes notations? Que sont S et V?
"On va spontanément d'une situation ordonnée vers une situation désordonnée, c'est la flèche du temps."

TLB
Messages : 30
Enregistré le : lun. juin 18, 2018 8:08 pm

Re: Defferentielle

Message par TLB » sam. sept. 15, 2018 10:55 am

Surface et volume elementaire je présume ?
2016-2019 : PTSI/PT*

Avatar du membre
Poliakoff
Messages : 297
Enregistré le : mar. juil. 18, 2017 2:16 pm
Classe : PC*
Localisation : Lyon

Re: Defferentielle

Message par Poliakoff » sam. sept. 15, 2018 10:34 pm

Entropie et potentiel ? Mystère ^^
"On va spontanément d'une situation ordonnée vers une situation désordonnée, c'est la flèche du temps."

YS1
Messages : 47
Enregistré le : dim. févr. 06, 2005 12:50 pm
Classe : MPSI, PCSI, MP*, PC*

Re: Defferentielle

Message par YS1 » dim. sept. 16, 2018 4:15 pm

La déférentielle, c'est l'opération qu'on utilise en présence d'un IG.

Avatar du membre
oty20
Messages : 569
Enregistré le : dim. avr. 30, 2017 1:48 am

Re: Defferentielle

Message par oty20 » dim. sept. 16, 2018 4:38 pm

C'est bien de participer de plus en plus au forum, tu t'améliores en expression Bravo continue cela t'aidera le jour du concours, j'ai appris l'anglais grâce au fait de souvent participer dans un forum anglais.


Bon pour ta question, ce calcule infinitésimal c'est la chose que j'ai le plus en aimé en physique de prepas c'est vraiment cool à manipuler et utiliser une fois à l'aise avec.

Pour le vecteur dS, le vecteur élément de surface en un point \( M \) de la surface \( (S) \),en faite tu prends deux déplacement élémentaires non colinéaires du plan tangent en \( M \), disons \( \vec{dm_{1}} \) et \( \vec{dm_{2}} \) alors
\( \vec{dS}=\vec{dm_{1}} \wedge \vec{dm_{2}} \)

l'exemple du formulaire en général est \( \vec{dm_{1}}=dx \vec{e_{x}} \) , \( \vec{dm_{2}}=dy \vec{e_{y}} \) cela te donne un petit rectangle de surface \( dxdy \) dans ton repère.


Pour le vecteur dV, l'élément de volume en un point \( M \) est défini à partir de trois déplacements élémentaires non coplanaires en \( M \) selon \( dV=(\vec{dm_{1}} \wedge \vec{dm_{2}}). \vec{dm_{3}} \) l'exemple du formulaire en repère cartésien c'est pour \( \vec{dm_{1}}=dx \vec{e_{x}} \) , \( \vec{dm_{2}}=dy \vec{e_{y}} \) et \( \vec{dm_{3}}=dz \vec{e_{z}} \) ce qui donne \( dV=dxdydz \), pour sa forme tu regarde la forme de la surface engendré par le produit vectoriel entre parenthèses et tu imagines quelle se superpose sur une épaisseur \( ||\vec{dm_{3}}|| \) , dans la direction de \( \vec{dm_{3}} \)
-sup: public -> Spé:chez moi.
-2018-??? Ecole Central Casablanca.

''L’ennemi du savoir , n'est pas l'ignorance , mais l'illusion du savoir '' all within the four seas are brothers .

Avatar du membre
fakbill
Messages : 11145
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Defferentielle

Message par fakbill » lun. sept. 17, 2018 1:17 pm

C'est une façon très très étrange de voir les choses. Pourquoi aller parler de produit vectoriel (qui au passage n'existe que dans R^3).
La "bonne" façon de voir ça est la suivante:
Tu commences par définir dans quell système de coordonnée tu te places.
Ensuite, tu regardes ce que fait un **petit déplacement** le long de chaque coordonnée.
En cartésiennes c'est trivial car, si tu te déplace un peu autour d'un point selon X alors il est evident que Y et Z restent constants. Le volume élémentaire sera donc simplement dXdYdZ.
Par contre, en cylindres ou en sphériques....***fais un dessin***. Vois ce qui se passé quand tu changes theta en theta+dtheta : le point se déplace d'autant plus que r est grand. Il se déplace de r*dtheta. Quand tu bouge selon le rayon, theta ne varie pas donc tu bouge uniquement de dr. La surface élémentaire sera donc dr*r*dtheta.
Avec un dessin ce sera evident. En sphérique ça l'est aussi mais il faut que le dessin soit bien fait.
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

matmeca_mcf1
Messages : 955
Enregistré le : mar. févr. 13, 2018 10:22 am

Re: Defferentielle

Message par matmeca_mcf1 » lun. sept. 17, 2018 5:06 pm

fakbill a écrit :
lun. sept. 17, 2018 1:17 pm
C'est une façon très très étrange de voir les choses. Pourquoi aller parler de produit vectoriel (qui au passage n'existe que dans R^3).
Cela existe (malheureusement pour les étudiants) aussi dans \( \mathbb{R}^d \). Cela s'appelle le produit extérieur. Et avec les formes différentielles, cela permet d'introduire la différentielle extérieure. Et cela sert justement dans ce contexte (intégrations de formes différentielles), pour construire les éléments de volumes et de surface. À n'étudier que si vous suivez un cours de géométrie différentielle.
Ancien ENS Cachan (maths) 1999--2003
Enseignant-Chercheur à l'enseirb-matmeca.
Les opinions exprimées ci-dessus n'engagent que moi et ne reflètent pas la position officielle de l'école dans laquelle j'enseigne.

Avatar du membre
fakbill
Messages : 11145
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Defferentielle

Message par fakbill » lun. sept. 17, 2018 7:50 pm

Oui oui... Mais on est au niveau prepa là...
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Mosalahmoh
Messages : 90
Enregistré le : lun. mars 26, 2018 12:46 am
Classe : Mpsi

Re: Defferentielle

Message par Mosalahmoh » dim. sept. 23, 2018 6:13 pm

TLB a écrit :
sam. sept. 15, 2018 10:55 am
Surface et volume elementaire je présume ?
oui :3

Mosalahmoh
Messages : 90
Enregistré le : lun. mars 26, 2018 12:46 am
Classe : Mpsi

Re: Defferentielle

Message par Mosalahmoh » dim. sept. 23, 2018 6:18 pm

fakbill a écrit :
lun. sept. 17, 2018 1:17 pm
C'est une façon très très étrange de voir les choses. Pourquoi aller parler de produit vectoriel (qui au passage n'existe que dans R^3).
La "bonne" façon de voir ça est la suivante:
Tu commences par définir dans quell système de coordonnée tu te places.
Ensuite, tu regardes ce que fait un **petit déplacement** le long de chaque coordonnée.
En cartésiennes c'est trivial car, si tu te déplace un peu autour d'un point selon X alors il est evident que Y et Z restent constants. Le volume élémentaire sera donc simplement dXdYdZ.
Par contre, en cylindres ou en sphériques....***fais un dessin***. Vois ce qui se passé quand tu changes theta en theta+dtheta : le point se déplace d'autant plus que r est grand. Il se déplace de r*dtheta. Quand tu bouge selon le rayon, theta ne varie pas donc tu bouge uniquement de dr. La surface élémentaire sera donc dr*r*dtheta.
Avec un dessin ce sera evident. En sphérique ça l'est aussi mais il faut que le dessin soit bien fait.
sincèrement j'ai aimé ça methode ;)

Avatar du membre
fakbill
Messages : 11145
Enregistré le : mer. juil. 30, 2008 4:59 pm
Classe : Dr.-Ing

Re: Defferentielle

Message par fakbill » lun. sept. 24, 2018 7:37 pm

Tu es perdu pour la physique avec les mains.
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 2 invités