Equation de la chaleur en cylindrique

Modérateurs : Quetzalcoatl, VDB

Répondre
Avatar du membre
Osvatski
Messages : 131
Enregistré le : ven. juin 30, 2017 1:40 pm
Classe : MP

Equation de la chaleur en cylindrique

Message par Osvatski » mer. févr. 07, 2018 8:48 pm

Bonsoir,

Dans un exo concernant la résistance d'un conducteur cylindrique, j'essaye de déterminer l'équation de la chaleur, je bloque sur un passage "mathématique" : ( j'ai considéré une couronne cylindrique d'épaisseur dr (entre r et r+dr) et de hauteur h
Après le bilan thermique pendant dt : \( \varrho (total)=\varrho (r)-\varrho (r+dr)=2\pi hdt\lambda [ (r+dr)\frac{\partial T}{\partial r}(applique\,a\,(r+dr)\,-r\frac{\partial T}{\partial r}(applique\,a\,(r)] \)

Mais après, je ne sais pas comment obtenir le laplacien ... Some help please !!
Bonne soirée !!
L'examinateur sort son portable de sa poche et le place à la verticale sur la table. Le portable tombe. Expliquer.

Avatar du membre
bullquies
Messages : 6530
Enregistré le : mar. avr. 17, 2012 9:19 pm
Classe : Thé à la

Re: Equation de la chaleur en cylindrique

Message par bullquies » mer. févr. 07, 2018 9:06 pm

bonsoir

Ca fait longtemps donc excuse si c'est une question bête, mais : pourquoi redémontrer l'équation de la chaleur plutôt que de l'appliquer directement ? (Evidemment ici il ne faut pas oublier les termes sources)

C'est bien plus compliqué de sortir le laplacien en cylindriques qu'en cartésiennes

Yoz
Messages : 302
Enregistré le : sam. juin 25, 2016 2:34 pm
Classe : M2 ICFP

Re: Equation de la chaleur en cylindrique

Message par Yoz » mer. févr. 07, 2018 9:13 pm

Je n'ai pas compris : que représente la grandeur \( \rho \) ici ?
EDIT : Ok, c'est la chaleur reçue, j'imagine (mais je n'avais jamais rencontré cette notation).
Sinon, le laplacien, en symétrie cylindrique, s'écrit \( \Delta = \frac1r\frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right) \). Tu peux poser \( f(r) = r T(r) \) ici, et il faut alors utiliser un développement limité de f dans la formule où tu es arrivé.
bullquies a écrit :
mer. févr. 07, 2018 9:06 pm
bonsoir

Ca fait longtemps donc excuse si c'est une question bête, mais : pourquoi redémontrer l'équation de la chaleur plutôt que de l'appliquer directement ? (Evidemment ici il ne faut pas oublier les termes sources)

C'est bien plus compliqué de sortir le laplacien en cylindriques qu'en cartésiennes
Certains exos demandent de refaire la démo (ou d'établir une équation du même genre) en symétrie cylindrique.
PCSI/PC* LLG 2014-2016
ENS Ulm
Colleur en PCSI/PC*.

Avatar du membre
Osvatski
Messages : 131
Enregistré le : ven. juin 30, 2017 1:40 pm
Classe : MP

Re: Equation de la chaleur en cylindrique

Message par Osvatski » mer. févr. 07, 2018 9:59 pm

Yoz a écrit :
mer. févr. 07, 2018 9:13 pm
Je n'ai pas compris : que représente la grandeur \( \rho \) ici ?
EDIT : Ok, c'est la chaleur reçue, j'imagine (mais je n'avais jamais rencontré cette notation).
Sinon, le laplacien, en symétrie cylindrique, s'écrit \( \Delta = \frac1r\frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right) \). Tu peux poser \( f(r) = r T(r) \) ici, et il faut alors utiliser un développement limité de f dans la formule où tu es arrivé.
Oui c'est le transfert thermique total reçu, désolé pour la notation un peu floue :3
Ouais je sais qu'il faut utiliser un développement limité mais je vois pas trop où c'est ... si tu peux expliciter le calcul tu me sauveras la vie !!!
Modifié en dernier par Osvatski le mer. févr. 07, 2018 10:02 pm, modifié 1 fois.
L'examinateur sort son portable de sa poche et le place à la verticale sur la table. Le portable tombe. Expliquer.

Avatar du membre
Osvatski
Messages : 131
Enregistré le : ven. juin 30, 2017 1:40 pm
Classe : MP

Re: Equation de la chaleur en cylindrique

Message par Osvatski » mer. févr. 07, 2018 10:01 pm

bullquies a écrit :
mer. févr. 07, 2018 9:06 pm
bonsoir

Ca fait longtemps donc excuse si c'est une question bête, mais : pourquoi redémontrer l'équation de la chaleur plutôt que de l'appliquer directement ? (Evidemment ici il ne faut pas oublier les termes sources)

C'est bien plus compliqué de sortir le laplacien en cylindriques qu'en cartésiennes
Oui comme Yoz l'a dit, sur des exo on est censé redémontrer l'équation ....
L'examinateur sort son portable de sa poche et le place à la verticale sur la table. Le portable tombe. Expliquer.

Avatar du membre
Hibiscus
Messages : 1400
Enregistré le : ven. oct. 27, 2017 10:55 am
Classe : Bac a fleurs

Re: Equation de la chaleur en cylindrique

Message par Hibiscus » mer. févr. 07, 2018 10:22 pm

Ne développe pas le vecteur densité de flux de chaleur (que je vais noter j par habitude) aussi vite que tu le fais..
Tu sais par définition de la dérivée que \( (r+dr)j(r+dr,t)=rj(r)+dr \partial_r(rj(r,t)) \)+ un second ordre qu'on gicle..
Donc, tu arrives rapidement à \( \text{coefficient}\cdot \partial_t T(r,t) = - \frac{1}{r} \partial_r (rj) + \text{Un terme source inexistant ici} \)
Une fois ici, tu invoques la Loi de Fourier, et change ton j avec \lambda et le gradient de température.
Tu reconnaîtras alors l'expression d'un Laplacien pour un milieu axi-symétrique, que t'as donné Yoz.

Note : Par souci d'alléger, j'ai utilisé la notation suivante \( \partial_x f(x) = {\partial f(x)}/{\partial x} \)
Lycée Masséna (Pcsi-PC*)
École polytechnique (X2015)
Université de Tokyo/Tohoku - Thèse (Astrophysique)

Avatar du membre
Osvatski
Messages : 131
Enregistré le : ven. juin 30, 2017 1:40 pm
Classe : MP

Re: Equation de la chaleur en cylindrique

Message par Osvatski » mer. févr. 07, 2018 11:21 pm

Hibiscus a écrit :
mer. févr. 07, 2018 10:22 pm
Ne développe pas le vecteur densité de flux de chaleur (que je vais noter j par habitude) aussi vite que tu le fais..
Tu sais par définition de la dérivée que \( (r+dr)j(r+dr,t)=rj(r)+dr \partial_r(rj(r,t)) \)+ un second ordre qu'on gicle..
Donc, tu arrives rapidement à \( \text{coefficient}\cdot \partial_t T(r,t) = - \frac{1}{r} \partial_r (rj) + \text{Un terme source inexistant ici} \)
Une fois ici, tu invoques la Loi de Fourier, et change ton j avec \lambda et le gradient de température.
Tu reconnaîtras alors l'expression d'un Laplacien pour un milieu axi-symétrique, que t'as donné Yoz.

Note : Par souci d'alléger, j'ai utilisé la notation suivante \( \partial_x f(x) = {\partial f(x)}/{\partial x} \)
Ahh d'accord !!! Mercii beaucoup, je vois un peu maintenant le truc :D . Mais euuh la formule de la dérivé que t'as écrit, tu l'obtient comment ? Hmm je vois que c'est comme Taylor à l'ordre 2 sauf que je vois pas comment y arriver ...
L'examinateur sort son portable de sa poche et le place à la verticale sur la table. Le portable tombe. Expliquer.

Avatar du membre
Hibiscus
Messages : 1400
Enregistré le : ven. oct. 27, 2017 10:55 am
Classe : Bac a fleurs

Re: Equation de la chaleur en cylindrique

Message par Hibiscus » mer. févr. 07, 2018 11:26 pm

Comment développerais-tu, à l'ordre 1, f(x+dx) ?
Multiplie cette expression par (x+dx), et conserve les terme d'ordre 1.
Lycée Masséna (Pcsi-PC*)
École polytechnique (X2015)
Université de Tokyo/Tohoku - Thèse (Astrophysique)

Avatar du membre
Osvatski
Messages : 131
Enregistré le : ven. juin 30, 2017 1:40 pm
Classe : MP

Re: Equation de la chaleur en cylindrique

Message par Osvatski » mer. févr. 07, 2018 11:44 pm

Ouaais c'est bon merciiiiii ^^ !
L'examinateur sort son portable de sa poche et le place à la verticale sur la table. Le portable tombe. Expliquer.

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 4 invités