Calcul numérique de capacité

Modérateurs : Quetzalcoatl, VDB

Répondre
Ckronikks
Messages : 212
Enregistré le : mar. juin 09, 2015 1:15 pm

Calcul numérique de capacité

Message par Ckronikks » mar. mai 22, 2018 8:48 am

Bonjour,
Je dois déterminer numériquement la capacité lineique d'un câble coaxial de forme cylindrique. Ainsi, j'ai considéré une tranche de ce câble avec un potentiel de 1V au niveau du conducteur central et 0V sur le deuxieme conducteur. Avec la methode des differences finies appliquée à l'équation de Laplace, j'ai déterminé une carte des potentiels sur la section.
Cependant, je dois maintenant en déduire la capacité lineique mais je ne vois pas comment faire. J'ai essayé d'utiliser le théorème de gauss, mais je ne vois pas comment calculer le flux du champ E à partir des potentiels.
Si quelqu'un peut m'expliquer, je suis preneur.
Merci.
Taupe (201)5

Kieffer Jean
Messages : 827
Enregistré le : sam. mars 28, 2009 7:33 pm
Classe : Prof
Localisation : PSI* Corneille, Rouen

Re: Calcul numérique de capacité

Message par Kieffer Jean » mar. mai 22, 2018 6:57 pm

bonjour,
le calcul est faisable analytiquement (pour un cylindre infini en tout cas)

mais numériquement il "suffit" de calculer le gradient de V pour en déduire le champ électrique...
après en fonction du maillage que tu as pris il y a moyen que ça devienne pénible ...
sinon tu peux regarder du côté de femm qui doit permettre de faire cela
Sciences Physiques, PSI* Corneille Rouen

Ckronikks
Messages : 212
Enregistré le : mar. juin 09, 2015 1:15 pm

Re: Calcul numérique de capacité

Message par Ckronikks » mar. mai 22, 2018 7:51 pm

Oui, j'ai la formule analytique, mais je voulais tester une méthode numérique.
J'ai calculé le gradient et j'obtient des valeurs de C moyennement précises.
La methode des éléments finis m'a l'air un peu trop compliquée pour moi actuellement.
Merci de votre aide.
Taupe (201)5

Kieffer Jean
Messages : 827
Enregistré le : sam. mars 28, 2009 7:33 pm
Classe : Prof
Localisation : PSI* Corneille, Rouen

Re: Calcul numérique de capacité

Message par Kieffer Jean » mar. mai 22, 2018 8:13 pm

essaie de voir ce qui se passe en resserrant le maillage
en pratique tu pars d'un maillage assez lache et tu pars de la solution trouvée pour reserrer le maillage (ça devrait converger plus vite)
bon le mieux ce serait un maillage multi échelle mais là c'est une autre paire de manche ...
Sciences Physiques, PSI* Corneille Rouen

Ckronikks
Messages : 212
Enregistré le : mar. juin 09, 2015 1:15 pm

Re: Calcul numérique de capacité

Message par Ckronikks » mar. mai 22, 2018 10:01 pm

Je vais essayer de resserer le maillage. Le problème est qu'en agrandissant ma matrice, les calculs commencent à prendre un bon moment à tourner.
Taupe (201)5

Avatar du membre
Néodyme
Messages : 286
Enregistré le : sam. janv. 09, 2016 10:12 am
Classe : prof physique

Re: Calcul numérique de capacité

Message par Néodyme » mar. mai 22, 2018 10:08 pm

Tu utilises quoi comme algorithme/code/logiciel ?
Sinon oui, E = -grad V.
Ta valeur de C change-t-elle beaucoup lorsque tu changes le maillage ? Si oui c'est que celui-ci n'est pas assez petit. Idem si tu changes le critère de convergence (tu dois bien avoir un truc qui te dit quand stopper le code ?).

Ckronikks
Messages : 212
Enregistré le : mar. juin 09, 2015 1:15 pm

Re: Calcul numérique de capacité

Message par Ckronikks » mer. mai 23, 2018 7:30 am

Jusque là, j'ai utilisé des tableaux sur python et j'applique par récursivité: V(i, j) (n) =1/4(V(i+i,j)(n)+V(i-1,j)(n)+...).
Mais j'ai pas pas fixé de condition d'arrêt de l'algorithme, je lui dit juste combien d'itérations il doit faire.
Si je lui fixe une condition j'ai peur qu'il ne s'arrête jamais car les valeurs de C que je trouve au bord du deuxième conducteur me semblent assez fausses..
Taupe (201)5

Avatar du membre
Néodyme
Messages : 286
Enregistré le : sam. janv. 09, 2016 10:12 am
Classe : prof physique

Re: Calcul numérique de capacité

Message par Néodyme » mer. mai 23, 2018 3:20 pm

En général pour ce genre d'algorithme on définit \( e = sum_{i,j}|V_\text{iteration~k}[i,j]-V_\text{iteration~k-1}[i,j]| \), et on indique à l'algorithme de s'arreter lorsque \( e \) est inférieur à une certaine valeur epsilon. 10^-4 par exemple.

Il faut au minimum faire une étude de la convergence des résultats, c-a-d est-ce qu'ils dépendent de epsilon. Pour cela calcule les valeurs de C pour epsilon = 10^-5, 10^-4, 10^-3, et voit si ça varie beaucoup ou pas.

Il faut faire pareil avec la taille de la grille.

Après pour accélérer la convergence il y a des techniques, mais déjà commence par ça.

Ckronikks
Messages : 212
Enregistré le : mar. juin 09, 2015 1:15 pm

Re: Calcul numérique de capacité

Message par Ckronikks » mer. mai 23, 2018 6:29 pm

D'accord merci, je vais essayer ça.
Taupe (201)5

Répondre

Qui est en ligne

Utilisateurs parcourant ce forum : Aucun utilisateur enregistré et 3 invités