Décomposition de Dunford

Un problème, une question, un nouveau théorème ?

Messages : 590

Enregistré le : 14 nov. 2007 23:37

Message par ThSQ » 22 janv. 2008 18:52

Mon prof fait du HP sans arrêt (bon, j'exagère un peu). Le plus souvent il le précise mais parfois non. C'est vrai que c'est gênant ...

Messages : 296

Enregistré le : 14 mars 2007 22:28

Localisation : Melun

Message par Jean Starynkévitch » 22 janv. 2008 19:04

sunmat a écrit :La démonstration est plutôt longue (2 pages dans mon cours, et j'écris assez petit). Elle utilise le théorème de Cayley-Hamilton et le lemme des noyaux, l'idée étant de construire d comme une somme de projecteurs sur les sous-espaces propres de u.
Sous-espaces caractéristiques plutôt. :? :?: :wink:
Pour l'unicité, on suppose la décomposition non unique en posant d' et n' vérifiant les propriétés, et on montre que d = d' et n = n'.

:D :D :D En général, ce genre de raisonnement s'applique à nombre de cas, et pas uniquement à la décomposition de Dunford.
Professeur de Mathématiques - PCSI (lycée Jacques Amyot, Melun, 77).

Messages : 797

Enregistré le : 25 juin 2006 18:16

Classe : Ingénieur

Localisation : Cambridge, UK

Message par sunmat » 22 janv. 2008 21:37

Oui c'est sous-espace caractéristiques, pas sous-espace propres (je sais pas pourquoi j'ai mis ça...)

Et pour la démo de l'unicité, ba oui c'est comme à peu près tout le temps. Là on démontre des trucs du genre d' commute avec d, puis n avec n', puis... etc je sais plus trop comment on arrive au résultat, mais on y arrive :lol:
MPSI (Carnot, Dijon) -> MP* (idem) -> ENS (Info, Ker Lann) -> Doctorat (ENS Rennes, IRISA Rennes) -> Post-doctorat (Argonne National Lab, IL, USA)
http://people.irisa.fr/Matthieu.Dorier

Avatar du membre

Messages : 3695

Enregistré le : 13 févr. 2004 15:11

Message par » 22 janv. 2008 22:56

bourricot a écrit :Si c'est HP et que c'est signalé, ça ne devrait pas figuré dans le cours et faire partie du programme de colle (et considéré comme un acquis)...
Un peu de hors-programme bien balisé et motivé peut quand même avoir sa place sans que cela soit un abus ou que cela soit réservé à la tête de classe.
Un exemple: la démonstration du théorème des valeurs intermédiaires est hors-programme (si si, c'est fou, non?). Le pire, c'est que la méthode de la dichotomie pour trouver des solutions approchées d'une équation figure, elle dans le programme, et qu'on peut parfaitement l'utiliser pour démontrer simplement le théorème des valeurs intermédiaires, ce qui permet en plus de montrer comment une idée intuitive se formalise pour fournir une démonstration bien carrée. Du coup, ça vaut le coup de le faire.
Il y a quelques passages comme ça dans les programmes. Mais, je te l'accord, pas suffisamment pour en caser un par jour.

Messages : 296

Enregistré le : 14 mars 2007 22:28

Localisation : Melun

Message par Jean Starynkévitch » 22 janv. 2008 23:06

Mû a écrit :Un peu de hors-programme bien balisé et motivé peut quand même avoir sa place sans que cela soit un abus ou que cela soit réservé à la tête de classe.
Un exemple: la démonstration du théorème des valeurs intermédiaires ....est hors-programme .... Le pire, c'est que la méthode de la dichotomie .... dans le programme
Oui, tout à fait d'accord là-dessus, mais là, tu vas chercher LA meilleure illustration de tout le programme pour étayer ta conclusion. :o
Donc je suis plutôt d'accord, mais en insistant encore davantage sur le « bien balisé » et le « motivé ».

Pour ce qui concerne Dunford, je pense franchement qu'il serait préférable de ne pas l'étudier pour une majorité d'élèves de la quasi-totalité des classes prépa; que cela peut souvent faire croire qu'il s'agit d'un outil miracle, alors que la plupart des exercices (y compris ceux de l'X) ne gagnent rien à l'utilisation de cette décomposition.
Professeur de Mathématiques - PCSI (lycée Jacques Amyot, Melun, 77).

Avatar du membre

Messages : 3695

Enregistré le : 13 févr. 2004 15:11

Message par » 22 janv. 2008 23:19

Jean Starynkévitch a écrit :Oui, tout à fait d'accord là-dessus, mais là, tu vas chercher LA meilleure illustration de tout le programme pour étayer ta conclusion. :o
Ciel, je suis découvert!
Donc je suis plutôt d'accord, mais en insistant encore davantage sur le « bien balisé » et le « motivé ».
Disons que quand la démonstration d'un théorème hors-programme est une illustration intéressante du programme et des techniques à connaître, c'est bien de le faire, mais en exercice, pour ne pas donner l'impression qu'on a affaire à un théorème miracle comme tu le dis dans la fin de ton message.

Messages : 1660

Enregistré le : 03 févr. 2007 21:16

Localisation : Athis-Mons

Message par bourricot » 23 janv. 2008 10:15

Mû a écrit :
Jean Starynkévitch a écrit :Oui, tout à fait d'accord là-dessus, mais là, tu vas chercher LA meilleure illustration de tout le programme pour étayer ta conclusion. :o
Ciel, je suis découvert!
Oui :lol: ! Jean S. a très bien résumé la situation :wink:.
En ce qui concerne le HP en MP* pour (mieux ?) préparer une poignée d'élèves en tête de classe à un ou deux concours, c'est créer un déséquilibre avec des classes entières de MP (avec ou sans étoile) aux autres concours qui n'exigent pas de connaissance HP. Des aménagements seraient les bienvenus dans les classes pour éviter cette inflation...
Alexandre Pacini
http://apacini.free.fr

Avatar du membre

Messages : 3695

Enregistré le : 13 févr. 2004 15:11

Message par » 23 janv. 2008 13:11

bourricot a écrit :En ce qui concerne le HP en MP* pour (mieux ?) préparer une poignée d'élèves en tête de classe à un ou deux concours, c'est créer un déséquilibre avec des classes entières de MP (avec ou sans étoile) aux autres concours qui n'exigent pas de connaissance HP. Des aménagements seraient les bienvenus dans les classes pour éviter cette inflation...
Et surtout un strict contrôle des énoncés posés aux écrits et aux oraux des concours afin de ne pas encourager ladite inflation.

Messages : 1660

Enregistré le : 03 févr. 2007 21:16

Localisation : Athis-Mons

Message par bourricot » 23 janv. 2008 14:20

Mû a écrit :Et surtout un strict contrôle des énoncés posés aux écrits et aux oraux des concours afin de ne pas encourager ladite inflation.
C'est une voie possible, mais en fait je ne serais pas trop pour, en tout cas en ce qui concerne les ENS. Que certaines écoles choisissent de ne pas tenir compte du programme en vigueur, c'est leur choix (et les ENS l'assument plutôt bien). Par contre, que l'on prépare dans la même classe ceux qui vont passer ces concours et ceux qui vont passer CCP ou Centrale par exemple, conduit à créer un déséquilibre et des inégalités en fin de compte. Il y a certainement des voies alternatives à celle que les prépas suivent actuellement. La question que je me pose est "est-ce qu'il y a des voix pour les faire entendre aux intéressés ?" :roll:...
Alexandre Pacini
http://apacini.free.fr

Messages : 2705

Enregistré le : 17 févr. 2005 20:38

Localisation : Loin

Message par omamar3131 » 23 janv. 2008 15:18

Jean Starynkévitch a écrit : Pour ce qui concerne Dunford, je pense franchement qu'il serait préférable de ne pas l'étudier pour une majorité d'élèves de la quasi-totalité des classes prépa; que cela peut souvent faire croire qu'il s'agit d'un outil miracle, alors que la plupart des exercices (y compris ceux de l'X) ne gagnent rien à l'utilisation de cette décomposition.
Tout à fait d'accord, mais il y a malheureusement encore des exos qui utilisent cette décomposition. C'est d'ailleurs en séchant sur un exo d'oral de l'X que j'ai appris l'existence de cette décomposition.
sunmat a écrit : La démonstration est plutôt longue (2 pages dans mon cours, et j'écris assez petit).
Il y a plus court que 2 pages avec une petite écriture. Mais peut-être est-ce une question de détails?
Pour l'unicité, on suppose la décomposition non unique en posant d' et n' vérifiant les propriétés, et on montre que d = d' et n = n'.
Peut-être..

Répondre