Séries

Un problème, une question, un nouveau théorème ?
Répondre

Messages : 6

Enregistré le : 25 févr. 2011 12:55

Classe : PSI

Séries

Message par G.C. » 25 févr. 2011 13:05

Bonjour,

J'aimerais savoir si le résultat suivant est vrai. Il me parait moral, mais je n'arrive pas à le prouver (ou à l'infirmer par un contre-exemple :? ).
" Soit (an) une suite de réels strictement positifs, terme général d'une série convergente. Alors (an) est un petit 'o' de 1/n ".

Merci =)

Messages : 106

Enregistré le : 07 mars 2008 20:22

Localisation : Palaiseau

Re: Séries

Message par MFred » 25 févr. 2011 13:16

Bonjour,

Sans hypothèse de décroissance de $ (a_n) $, c'est faux. Un contre exemple : $ a_n = \frac{1}{n} $ si n est un carré, $ a_n = 0 $ sinon.

Par contre, le résultat est vrai si $ (a_n) $ est décroissante.
Ancien taupin (2006-2009) - Lycée Montaigne, Bordeaux (MPSI2, MP1, MP1)
X2009

Messages : 25

Enregistré le : 20 févr. 2011 17:34

Re: Séries

Message par Aldmer » 25 févr. 2011 13:17

Il est faux. Tu peux par exemple prendre an = 1/n si n a une racine entière, 0 sinon.

Il devient vrai si tu prends pour an une suite décroissante.

EDIT: Ah, devancé :-( !

Messages : 6

Enregistré le : 25 févr. 2011 12:55

Classe : PSI

Re: Séries

Message par G.C. » 01 mars 2011 18:24

D'accord =) Quelqu'un connait une preuve du résultat si on suppose que (an) est décroissante?

Messages : 1836

Enregistré le : 01 août 2007 15:04

Classe : américaine!

Localisation : C'est idéal.

Re: Séries

Message par gardener » 01 mars 2011 20:27

Tu peux le montrer à la main de la façon suivante :
Par l'absurde, on suppose que : $ \exist \varphi $ une extraction vérifiant de plus $ \varphi(n+1) \geq 2*\varphi (n) $ telle que $ \forall \ n \ a_{\varphi(n)} \geq \frac{\mu}{\varphi(n)} $ avec $ \mu > 0 $.
Ensuite, tu sommes tout par paquet en minorant $ a_{p} $ par $ \frac{\mu}{\varphi(n+1)} $ lorsque p décrit l'intervalle $ [\varphi(n)+1, \varphi(n+1)] $: ça diverge !

edit : il y avait une petite coquille.
Modifié en dernier par gardener le 02 mars 2011 01:52, modifié 2 fois.
Doctorant Maths-Info, ancien ENS Cachan.

Messages : 1095

Enregistré le : 03 déc. 2010 21:13

Re: Séries

Message par Necklor » 01 mars 2011 21:30

(Et bien veillé à dire que (an) est de signe constant pour pouvoir sommer par tranche)
Chat d'entraide mathématiques : #les-mathematiques sur le réseau IRC Epiknet (irc.epiknet.org) ou en un clic via le lien : [url]irc://irc.epiknet.org/les-mathematiques[/url]

Messages : 111

Enregistré le : 30 oct. 2009 09:36

Classe : ECS 2e année

Re: Séries

Message par Maissa » 01 mars 2011 23:41

une autre façon possible (qui me semble plus facile) est de montrer que n*an tend vers 0, pour cela on peut utiliser les sommes partielles, la décroissance, et le reste en montrant tout d'abord que 2n*a2n tend vers 0.
en espérant ne pas me tromper

Répondre