Continuité d'une distance.

Un problème, une question, un nouveau théorème ?
Répondre

Messages : 238

Enregistré le : 20 juil. 2010 17:23

Classe : MP 5/2

Continuité d'une distance.

Message par Januspyrus » 07 sept. 2011 21:44

Bonjour, une question faisant partie d'un début d'un devoir m'embête:

On se place dans le plan euclidien, rapporté à un repère orthonormé direct ( O,i,j ) et E est une partie fermée et bornée du plan.

Pour A,B dans E, on note: d(A,B) = AB ( et d'autres notations inutiles pour ma question :mrgreen: ).

Montrer que l'application d qui va de ExE dans R+, qui a ( A,B ) associe d(A,B) est continue sur ExE.

Je ne vois pas comment faire, je n'ai pas de méthode. La base comme montrer qu'une fonction est continue sur un segment d'accord, mais là on est sur ExE.
Est-ce que déjà je peux montrer qu'à A fixé dans E, d(A,B) est continue dans E, seul B varie en fait ? Ensuite de même pour la deuxième variable, et puis ? :(

Ca ce serait une méthode classique, il n'y a pas d'astuce pour aller plus vite ? ( dans le genre lipschitzienne implique continue, ou bien vu que c'est une distance ... :?: ).

Messages : 61

Enregistré le : 14 mai 2011 07:58

Re: Continuité d'une distance.

Message par zulon » 08 sept. 2011 08:11

Essaye de montrer que la fonction est lipschitzienne. Tu connais quand même l'inégalité triangulaire ? d(a,c) <= d(a,b) + d(b,c). Essaye d'utiliser ça à bon escient.
Ou bien, vu que tu es dans un cas simple, tu peux considérer que c'est une fonction de R⁴ dans R (xA,yA,xB,yB) -> racine((xA-xB)²+(yA-yB)²) qui est facilement continue. Mais c'est moche, parce que ça ne marche qu'en dimension finie et pour les distances dont on connaît une expression simple.
Tu ne peux pas montrer que la fonction sur E² est continue en restreignant à une variable fixe, ça ne marche pas. On peut sûrement faire des contre-exemples en trifouillant des fonctions qui ont telle valeur sur telle droite verticale etc.

Messages : 238

Enregistré le : 20 juil. 2010 17:23

Classe : MP 5/2

Re: Continuité d'une distance.

Message par Januspyrus » 08 sept. 2011 19:05

Je n'arrive pas à montrer que la fonction est lipschizienne. Même avec ton indication.

Le problème est que je n'arrive pas à écrire ce que je dois montrer au final. On part de ExE, on s'intéresse à des couplets de points.
On arrive dans R+, avec sa norme usuelle ( valeur absolue ). Donc le début que je veux montrer est avec des valeurs absolues:
d(A,B)-d(C,D)
Mais ensuite, il faut que j'ai une norme dans ExE, et là je ne vois pas.

Messages : 985

Enregistré le : 07 mars 2010 19:30

Classe : Oui

Re: Continuité d'une distance.

Message par Nuhlanaurtograff » 08 sept. 2011 19:43

Déjà, quand tu disposes d'une norme sur E, ExE est de fait muni de la norme produit induite (N'(A,B) = max (N(A),N(B))), sauf indication contraire.
Ici, tu veux montrer que si (a,b) est proche de (c,d) (au sens de la norme produit), alors d(a,b) est proche de d(c,d). Donc :
|d(a,b) - d(c,d)| = |d(a,b) - d(c,b) + d(c,b) - d(c,d)| <= d(a,c) + d(b,d)
te donne ce que tu veux.

Messages : 238

Enregistré le : 20 juil. 2010 17:23

Classe : MP 5/2

Re: Continuité d'une distance.

Message par Januspyrus » 08 sept. 2011 19:58

D'accord merci, je ne connaissais pas ce résultat.

Avatar du membre
LB

Messages : 1059

Enregistré le : 09 juin 2008 14:14

Localisation : par rapport à un idéal maximal

Re: Continuité d'une distance.

Message par LB » 08 sept. 2011 22:45

C'est pas vraiment un "résultat", c'est plutôt la réponse à une question qu'il faut se poser directement avant d'attaquer l'exercice. C'est la question "que signifie continu sur ExE ?"

La réponse, c'est que tu cherches à montrer que c'est continu pour la topologie d'espace vectoriel normé produit. Ici ExE est un e.v.n de dimension finie, produit d'un e.v.n de dimension finie par lui même. Toutes les normes y sont donc équivalentes, et la continuité ne dépend pas de la norme choisie. Tu peux donc prendre par exemple la norme "somme", auquel cas le calcul fait ci-dessus par Nuhlanaurtograff prouve précisément que la fonction est 1-lipschitzienne.

Messages : 238

Enregistré le : 20 juil. 2010 17:23

Classe : MP 5/2

Re: Continuité d'une distance.

Message par Januspyrus » 09 sept. 2011 16:43

Je m'étais justement posé cette question, et je ne trouvais pas la réponse. On vient juste de commencer la spé en même temps.

Avatar du membre
LB

Messages : 1059

Enregistré le : 09 juin 2008 14:14

Localisation : par rapport à un idéal maximal

Re: Continuité d'une distance.

Message par LB » 11 sept. 2011 13:51

T'inquiètes, c'est normal de pas se poser les bonnes questions tout de suite.
Réussir à se poser la bonne question est souvent la plus grosse partie du boulot, parce que même si on n'a pas la réponse, on sait qu'on a compris le fond du problème ;)

Bonne continuation !

Messages : 238

Enregistré le : 20 juil. 2010 17:23

Classe : MP 5/2

Re: Continuité d'une distance.

Message par Januspyrus » 11 sept. 2011 14:28

Merci. :) C'était une question dans un DM ( type CCP ), je verrais bien ce qu'en pense ma prof. :mrgreen:

Répondre