deux questions

Un problème, une question, un nouveau théorème ?

Messages : 2480

Enregistré le : 25 déc. 2005 15:05

Localisation : PARIS,LLG,when I die I'll go to heaven because I served my time in HeLLG (lol)

deux questions

Message par emmo » 20 févr. 2006 19:12

bonjour,
pourquoi (c'est ce que nous a dit notre prof) n'y a-t-il pas d'ordre pour les complexes? pourquoi ne peut-on pas donner d'orientation en trois dimensions? (je chercherais plutôt une démonstration car mon prof m'a dit que le sens n'était pas le même selon si on regarde du haut ou du bas notre plan...)
merci d'avance
Image
les sirènes de la 5/2 chantent une douce mélodie^^
olympique d'emmo-vais(jeux de mots) droit en 5/2!!!

Messages : 80

Enregistré le : 10 janv. 2006 02:00

Localisation : Casablanca / Villeurbanne

Re: deux questions

Message par Pion0 » 20 févr. 2006 19:43

emmo a écrit :bonjour, pourquoi n'y a-t-il pas d'ordre pour les complexes?
Quand on passe d'un ensemble à un autre, certes cela nous permet d'effectuer plus d'opérations et de résoudre plus d'équations impossibles dans le premier ensemble, mais en même temps ca nous prive d'autres choses (ex : la récurence est faisable sur N et Z et impossible sur R). C'est pour ça qu'on a inventé les nombres complexes pour résoudre des équation à discriminant négatif.
Géométriquement, tous les nombres réels peuvent être représentés sur une droite orientée, mais coomme les complexes sont représentés un plan, on ne peut dire que l'un est plus grand que l'autre.
Je cherche une autre preuve aussi.

Avatar du membre
dSP

Messages : 691

Enregistré le : 03 oct. 2004 11:59

Localisation : Versailles

Message par dSP » 20 févr. 2006 19:53

Il faut commencer par bien poser la question :

que demande-t-on à une "bonne relation d'ordre sur C" ?

1) qu'elle soit totale

2) qu'elle soit compatible avec l'addition
(quels que soient x,y,z complexes, si x<=y, alors
x+z <=y+z).

3) qu'elle soit compatible avec la multiplication
(quel que soit (x,y) dans C^2, si 0<=x et 0<=y, alors 0<=xy).

Aucune relation d'ordre sur C ne vérifie ces trois propriétés.
Pour le démontrer, essayez de comparer 0 et i.
Professeur de Mathématiques en MP*
Lycée Privé Sainte-Geneviève

Messages : 2480

Enregistré le : 25 déc. 2005 15:05

Localisation : PARIS,LLG,when I die I'll go to heaven because I served my time in HeLLG (lol)

Message par emmo » 20 févr. 2006 21:02

d'accord je veux bien essayer de comparer 0 et i (a priori je n'ai aucune idée de comment démontrer par l'absurde que l'on ne peut pasles comparer (je suppose que c'est cela qu'il faut faire non?)) mais est-ce que cela pourra faire office de démonstration ou ceci est juste une approche? et pour l'orientation dans l'espace?(est-ce compréhensible si l'on a seulement le bagage technique d'un terminale?)
(désolé de l'imprécision de ma première question je n'avais réellement saisi les différences...)
merci d'avance
Image
les sirènes de la 5/2 chantent une douce mélodie^^
olympique d'emmo-vais(jeux de mots) droit en 5/2!!!

Messages : 9

Enregistré le : 16 oct. 2004 13:10

Localisation : casablanca

Message par BonstoK » 20 févr. 2006 22:01

d'accord je veux bien essayer de comparer 0 et i (a priori je n'ai aucune idée de comment démontrer par l'absurde que l'on ne peut pasles comparer (je suppose que c'est cela qu'il faut faire non?)) mais est-ce que cela pourra faire office de démonstration ou ceci est juste une approche?
voila par exemple sur R si x<y et si on multiplie par a² qui est positif l'ordre ne change pas. Alors que sur C i²=-1 donc en faisant la mème chose l'ordre va changer de la on ne peux parler d'ordre que pour les normes dans C (c'est comme ca que je l'ai compris j'espere que ca soit juste :roll: )

Messages : 70

Enregistré le : 19 juil. 2005 18:27

Localisation : Canada

Message par jojo » 20 févr. 2006 22:36

Oui attention, les 3 propriétés ne peuvent pas être vérifiée en même temps. Dans ce cas on dit que C n'est pas un corps totalement ordonné.

Cependant C est totalement ordonné pour certaines relations. Evidemment elles ne peuvent pas vérifier les 3 propriétés en même temps, mais on peut quand même ordonnée C, ou n'importe quel ensemble d'ailleurs.

Messages : 2705

Enregistré le : 17 févr. 2005 20:38

Localisation : Loin

Message par omamar3131 » 21 févr. 2006 00:20

Et d'ailleurs, il y a plusieurs ordres sur N..Cherches l'ordre de Sarkoovski par exemple (Je ne sais pas si l'orthographe est correcte).

Messages : 168

Enregistré le : 29 oct. 2005 17:19

Message par florian-LR » 24 févr. 2006 18:29

Escusez moi d'être ignare mais que veut dire 'ordre' ici?

Avatar du membre

Messages : 3695

Enregistré le : 13 févr. 2004 15:11

Message par » 24 févr. 2006 18:59

florian-LR a écrit :Escusez moi d'être ignare mais que veut dire 'ordre' ici?
Relation réflexive, transitive et antisymétrique.

Messages : 168

Enregistré le : 29 oct. 2005 17:19

Message par florian-LR » 24 févr. 2006 19:09

Quand est-ce que l'on voit cette notion au fait?

Répondre