Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autres..

Un problème, une question, un nouveau théorème ?

Messages : 1720

Enregistré le : 27 oct. 2013 10:16

Classe : MP*2

Localisation : Paris

Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autres..

Message par The TJFK » 10 mars 2015 10:44

Soit f une fonction de classe C3 de IR dans IR*+. On pose b:=ln o f, c'est-à-dire f=exp o b.

On suppose sur IR tout entier:

• (b' strictement positive et croissante) ou (b' strictement négative et décroissante)
• b'''=O((b')^2) (où b''' est b tierce ie b dérivée trois fois)

Montrer que abs(f') est équivalente à la moyenne géométrique de f et abs(f'') au voisinage de +oo.


(Remarque: attention, dans la deuxième hypothèse, c'est un O et non un petit o. L'astuce de Lagrange ne marche pas)
(Remarque: Cet exercice est difficile)
Lycée Privé Sainte-Geneviève
2012-2013: MPSI 1 (PhT)
2013-2014: MP*2 (dSP)
ENS Ulm
An I: L3
An II: M1 + M2
An III: Entreprise
An IV: Agreg + début de thèse

En salle W, à vous de jouer sans plus aucun fil !!
https://www.youtube.com/watch?v=4GLkrW9kluo

Messages : 1095

Enregistré le : 03 déc. 2010 21:13

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Necklor » 15 mars 2015 00:50

Mdr le titre.
Chat d'entraide mathématiques : #les-mathematiques sur le réseau IRC Epiknet (irc.epiknet.org) ou en un clic via le lien : [url]irc://irc.epiknet.org/les-mathematiques[/url]

Messages : 254

Enregistré le : 26 mai 2014 22:32

Classe : Doctorat

Localisation : Villetaneuse

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par zwyx » 15 mars 2015 00:55

Necklor a écrit :Mdr le titre.
Ptdr
2012-2014 : MPSI (HX4) / MP*2 - Lycée du Parc (Lyon)
2014-2019: L3 / M1 / Prépa Agreg / M2 Maths Fondas - ENS Paris-Saclay puis Paris 6
2019-2022 : Doctorat - Paris 13

Messages : 1095

Enregistré le : 03 déc. 2010 21:13

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Necklor » 15 mars 2015 12:40

@The TJFK tu as oublié le lien YouTube vers une musique de ton manga chelou
Chat d'entraide mathématiques : #les-mathematiques sur le réseau IRC Epiknet (irc.epiknet.org) ou en un clic via le lien : [url]irc://irc.epiknet.org/les-mathematiques[/url]

Messages : 1720

Enregistré le : 27 oct. 2013 10:16

Classe : MP*2

Localisation : Paris

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par The TJFK » 15 mars 2015 13:45

Celle-ci conviendrait bien pour cet exo je pense:

https://www.youtube.com/watch?v=vzfodAERwuU

Et sinon, personne ne veut tenter l'exo ?
Lycée Privé Sainte-Geneviève
2012-2013: MPSI 1 (PhT)
2013-2014: MP*2 (dSP)
ENS Ulm
An I: L3
An II: M1 + M2
An III: Entreprise
An IV: Agreg + début de thèse

En salle W, à vous de jouer sans plus aucun fil !!
https://www.youtube.com/watch?v=4GLkrW9kluo

Messages : 1349

Enregistré le : 10 janv. 2010 16:22

Classe : 1G-nieur

Localisation : 94

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Porcepic » 15 mars 2015 15:15

Necklor a écrit :Mdr le titre.
j m abon
2010-12 : MPSI2 > MP* – Marcelin Berthelot, Saint-Maur-des-Fossés (94)
2012-15 : IENAC12L, ÉNAC, Toulouse (31)

Messages : 430

Enregistré le : 18 avr. 2010 17:16

Classe : Normal

Localisation : Paris

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Silvere Gangloff » 15 mars 2015 22:28

Joli exercice, dans le genre bourrin.

Je me place dans le cadre b' croissante positive.

$ f'=b' f $ et $ f''=b" f + b'^2f $ donc ce qu'on demande est que
$ b'^2 $ équivalent à $ b"+b'^2 $,
c'est à dire que que $ b"=o(b'^2) $.
Appelons $ h(t)=b'(t) $.
Il existe $ M>0 $ tel que pour tout $ t $ réel $ h"(t) \le M h(t) ^2 $,
d'où $ h' h" \le M h'(t) h(t) ^2 $ car $ b" $ est positive.
On en déduit $ h'(t) ^2 \le 2Mh(t) ^3 /3 + C $ pour une constante $ C $.
Il suit que $ \frac{|h'(t)|}{h(t) ^2} \le \frac{\sqrt{2M h(t) ^3 /3 + C}}{h(t)^2} $
Deux cas sont possibles : h tend vers l'infini ou h est converge vers une limite >0 (par croissance).
Dans le premier cas, la dernière inégalité termine la preuve. Dans le second cas, il suffit de montrer que
$ h' $ tend vers 0. Il est alors pas très dur (je ne vais pas le faire) de montrer que pour une fonction
croissante et bornée, sa dérivée tend vers 0 en l'infini.
Modifié en dernier par Silvere Gangloff le 15 mars 2015 22:55, modifié 2 fois.

Messages : 1720

Enregistré le : 27 oct. 2013 10:16

Classe : MP*2

Localisation : Paris

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par The TJFK » 15 mars 2015 22:40

Silvere Gangloff a écrit : pour une fonction
croissante et bornée, sa dérivée tend vers 0 en l'infini.
Non. (prends une fonction qui croît de tous petits morceaux (dont la série converge) mais de plus en plus brutalement)
Lycée Privé Sainte-Geneviève
2012-2013: MPSI 1 (PhT)
2013-2014: MP*2 (dSP)
ENS Ulm
An I: L3
An II: M1 + M2
An III: Entreprise
An IV: Agreg + début de thèse

En salle W, à vous de jouer sans plus aucun fil !!
https://www.youtube.com/watch?v=4GLkrW9kluo

Messages : 430

Enregistré le : 18 avr. 2010 17:16

Classe : Normal

Localisation : Paris

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Silvere Gangloff » 15 mars 2015 22:42

The TJFK a écrit :
Silvere Gangloff a écrit : pour une fonction
croissante et bornée, sa dérivée tend vers 0 en l'infini.
Non. (prends une fonction qui croît de tous petits morceaux (dont la série converge) mais de plus en plus brutalement
En effet, j'ai dit une belle bêtise.

Messages : 2770

Enregistré le : 13 mai 2014 21:12

Classe : intégré

Re: Défi pour V@J, Thaalos, JeanN, MATHADOR et tous les autr

Message par Jay Olsen » 15 mars 2015 22:56

The TJFK a écrit :
Silvere Gangloff a écrit : pour une fonction
croissante et bornée, sa dérivée tend vers 0 en l'infini.
Non. (prends une fonction qui croît de tous petits morceaux (dont la série converge) mais de plus en plus brutalement)
Comment est-ce qu'une série de terme croissant (strictement) peut converger ?
C'est plutôt les tous petits morceaux dont la série converge non ?
Toujours en train de calculer des matrices de rotation

Répondre