Équivalent en 0 d’une intégrale à paramètre
Publié : 10 nov. 2019 13:05
Bonjour,
Je bloque fortement sur une question d’un exercice:
On a une fonction définie par: F(x)= intégrale de 0 à 1 de (dt/t^3+t+x) avec x un réel >0
La question est: démontrer que F(x)~(-ln(x)) quand x tend vers 0
Sachant que je suis en mpsi et qu’il y a beaucoup d’outils que je n’ai pas le droit d’utiliser puisque pas encore vus... on a pas encore vraiment vu les intégrales dépendant d’un paramètre officiellement
Dans les questions d’avant on a montré que F(x) tend vers 0 lorsque x tend vers 0
Et j’ai réussi à montrer que 1/2<=F(x)/lnx <=1
Je ne sais pas si je devrais essayer de minorer par quelque chose qui tend aussi vers 1, ou si ce n’est pas du tout la bonne technique
Merci d’avance, je ne sais pas si j’ai été clair
Je bloque fortement sur une question d’un exercice:
On a une fonction définie par: F(x)= intégrale de 0 à 1 de (dt/t^3+t+x) avec x un réel >0
La question est: démontrer que F(x)~(-ln(x)) quand x tend vers 0
Sachant que je suis en mpsi et qu’il y a beaucoup d’outils que je n’ai pas le droit d’utiliser puisque pas encore vus... on a pas encore vraiment vu les intégrales dépendant d’un paramètre officiellement
Dans les questions d’avant on a montré que F(x) tend vers 0 lorsque x tend vers 0
Et j’ai réussi à montrer que 1/2<=F(x)/lnx <=1
Je ne sais pas si je devrais essayer de minorer par quelque chose qui tend aussi vers 1, ou si ce n’est pas du tout la bonne technique
Merci d’avance, je ne sais pas si j’ai été clair