Intervention Somme et intégrale

Un problème, une question, un nouveau théorème ?
Répondre

Messages : 23

Enregistré le : 13 oct. 2018 15:44

Classe : PC pas star

Intervention Somme et intégrale

Message par Bracadabracx » 24 oct. 2020 17:03

Bonjour, quelqu'un aurait un exemple où il est impossible d'intervertir une Somme infinie et une intégrale ?

Merci pour votre aide.

Messages : 2102

Enregistré le : 27 oct. 2017 10:55

Classe : Bac a fleurs

Re: Intervention Somme et intégrale

Message par Hibiscus » 24 oct. 2020 21:46

Tu peux en trouver beaucoup, selon les "conditions" d'application du theoreme que tu souhaites jeter.

Au pif, par exemple, un triangle isocele de hauteur n, sur [0,1].
La suite de fonctions ne tend pas vers uniformement vers la limite simple (qui est la fonction nulle) ; chaque fonction a pour integrale 1/2.
Lycée Masséna (Pcsi-PC*) -- École polytechnique (X15) -- PhD Student (Japon, Astrophysique) -- Ingé (spatial)

Messages : 80

Enregistré le : 04 août 2018 12:54

Re: Intervention Somme et intégrale

Message par Nicolas Patrois » 25 oct. 2020 14:29

Il y a au moins un contre-exemple sur ce sujet dans le livre de contre-exemples de Hauchecorne.
INFINITÉSIMAL : On ne sais pas ce que ce c’est, mais a rapport à l’homéopathie.
-+- Gustave Flaubert, Dictionnaire des idées reçues -+-

Répondre