Pendules couplés dans le cas non linéaire

Messages : 9

Enregistré le : 26 mai 2015 23:43

Classe : MP

Pendules couplés dans le cas non linéaire

Message par archer » 27 mai 2015 00:05

Bonjour,


Je veux mettre en évidence l'expérience de Fermi Pasta Ulam sur la répartition de l'énergie dans les différents modes propres. En effet, il faudrait projeter l'évolution temporelle de chaque angle dans la base des vecteurs propres orthogonaux obtenus dans le cas linéaire. Je devrais normalement montrer que l'énergie est quasiment localisée dans l'un des modes propres au bout d'un temps très grand. Comme les équations sont très difficiles à résoudre analytiquement, j'ai opté pour une analyse numérique. Avec mon programme, je réussi à avoir l'évolution temporelle des angles en fonction du temps. Je ne sais pas comment définir de manière carré l'énergie dans un mode propre particulier. Si je réussi à le faire, je pourrai représenter les différentes énergies en fonction du temps.


Merci de votre réponse !

Messages : 276

Enregistré le : 14 juin 2011 16:29

Classe : Pc*

Re: Pendules couplés dans le cas non linéaire

Message par pcjanson » 27 mai 2015 00:27

Analyse de Fourier discrète (FFT) + Parseval?

Messages : 9

Enregistré le : 26 mai 2015 23:43

Classe : MP

Re: Pendules couplés dans le cas non linéaire

Message par archer » 27 mai 2015 15:54

Ma transformée de Fourier sera différente au four à mesure que le temps sur lequel j'intègre augmente ou diminue, les amplitudes projetées sur les modes propres varient donc en fonction du temps. Donc il me faudra une superposition de plusieurs courbes correspondant à différents temps d'intégration pour suivre l'évolution de ces amplitudes. Mon ordi bugg au bout d'un moment.

Messages : 11328

Enregistré le : 30 juil. 2008 16:59

Classe : Dr.-Ing

Re: Pendules couplés dans le cas non linéaire

Message par fakbill » 27 mai 2015 16:59

Je veux mettre en évidence l'expérience de Fermi Pasta Ulam sur la répartition de l'énergie dans les différents modes propres.
Ca commence mal car ta phrase ne veut rien dire. On comprend ce que tu veux dire mais "mettre en évidence une expérience" ne veut rien dire en francais.
Mon ordi bugg au bout d'un moment.
Non. C'est juste que tu ne sais pas t'y prendre. Numériquement c'est un tout petit calcul pour un CPU récent.

Fermi Pasta Ulam donne une écolution presque périodique (et c'est ca qui est étrange :)).
Bien sûr la FFT va dépendre de la fenêtre temporelle que tu prends mais, il c'est quasi périodique et du moment que tu prends une fenêtre bien plus grande qu'une période, tu verras un pic dans la FFT (le sinus) et d'autres pic plus petits correspondant aux perturbations.
Avant de faire une FFT, as tu essayé de faire un PLOT de tes données? Est ce que ca a une tête quasi périodique?
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Messages : 9

Enregistré le : 26 mai 2015 23:43

Classe : MP

Re: Pendules couplés dans le cas non linéaire

Message par archer » 27 mai 2015 20:40

A quelle pulsation correspondrait le seul pic long dans la FFT? J'ai essayé de faire un plot de l'un des angles: (ps: j'ai choisi 20 pendules, condition initiale aléatoire mais les angles de lancement des pendules sont tous compris entre 110 et 170°; pas de frottement); ce n'est pas tout à fait périodique sur t=1h mais" ça a l'air". Pourquoi y aurait il périodicité?

Messages : 11328

Enregistré le : 30 juil. 2008 16:59

Classe : Dr.-Ing

Re: Pendules couplés dans le cas non linéaire

Message par fakbill » 28 mai 2015 11:10

A quelle pulsation correspondrait le seul pic long dans la FFT?
de qui de quoi de où??
un "long" pic??
tu fais la fft de quoi exactement?
pourquoi y aurait il périodicité?
Je n'ai jamais dit que c'était périodique.
Tu as lu la théorie (ou même juste histoire) de cette expérience? Ils s'attendaient À trouver un comportement chaotique et à avoir un une évolution qui remplit tout l'espace des phases...or SURPRISE, ils ont observé une évolution presque périodique. Ca a eu de simplication sur ce qu'on pensait de la physique statistique. Si je te dis "ergodique" je te parle chinois? Je ne sais pas ce que tu as lu sur cette expérience.
; ce n'est pas tout à fait périodique sur t=1h mais" ça a l'air
: avec les équations incluant une anharmonicité ou avec juste des pendules "normaux"?
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Messages : 9

Enregistré le : 26 mai 2015 23:43

Classe : MP

Re: Pendules couplés dans le cas non linéaire

Message par archer » 28 mai 2015 15:14

#C=constante de torsion
#l=longueur des pendules
#J=moment d'inertie=msse*l**2
#m=temps d'intégration
#N: nombre de pendules
#g=contante de gravitation =10

Code : Tout sélectionner

def pendules(C,msse,l,m,N):
    g=10
    J=msse*l**2
    w1=sqrt(C/J)
    wo=sqrt(msse*g*l/J)
    dt=2*pi/wo/25
    M=int(m/dt)
    T=[k*dt for k in M]  
        
    U=[[] for k in range(N)]
    #ici U[k] represente les positions du pendule k 
    # j'initialise les deux positions à t=0 et t=dt de tous les pendules en les prenant identiques 
    
    for k in range(N):
        z=list(random(1))#random(1) génère un nombre entre 0 et 1
        z=[2+l for l in z]# les angles sont compris entre 2rad et 3 rad
        U[k]=z#initialisaion à t=0
        
    for k in range(N):
        U[k].append(U[k][0])#initialisation à t=dt  
    
    # on traite le premier pendule à part    
    for k in range(2,M):
        
        a=2*(1-(dt*w1)**2)*U[0][k-1] -((dt*wo)**2)*(sin(U[0][k-1]))-U[0][k-2]+ ((dt*w1)**2)*(U[1][k-1])
        
        U[0].append(a)
        
    #on traite le dernier pendule à part
            
        a=2*(1-(dt*w1)**2)*U[N-1][k-1] -((dt*wo)**2)*(sin(U[N-1][k-1]))-U[N-1][k-2]+(dt*w1)**2)*(U[N-2][k-1])
        
        U[N-1].append(a)
        
        #les pendules intermédiaires
         if N>2:
            for j in range(1,N-1):
                a=2*(1-(dt*w1)**2)*U[j][k-1] -((dt*wo)**2)*(sin(U[j][k-1]))-U[j][k-2]+ ((dt*w1)**2)*(U[j+1][k-1] + U[j-1][k-1])
                U[j].append(a+b)
            
    return(U,dt,T)
 

msse,l,m,C,N=1,0.1,1000,0.8,20 #1kg,0.1m,1000secondes,0.8N.m.rad-1,20 pendules
U,dt,X=pendules(C,msse,l,m,N)
Y=U[10]
from scipy import fftpack

fft_Y = fftpack.fft(Y)
freq0 = fftpack.fftfreq(len(Y), dt)
#freq=[2*pi*k for k in freq0]
plt.xlim(0,3)
plt.xlabel('frequence(rad)'); plt.ylabel('amplitude')
plt.plot(freq0, np.abs(fft_Y))
#plt.legend()
plt.show()


La FFT du pendule numéro 10 est en pièce jointe: cette FFT est similaire pour tous les autres pendules à amplitude près. Je ne comprends pas pourquoi 'cest en zéro que je retrouve un pic. Prière de me dire où j'ai fair une erreur
Fichiers joints
FFT de U[10] (évolution temporelle du pendule numéro 10)
FFT de U[10] (évolution temporelle du pendule numéro 10)
forum.png (41.79 Kio) Vu 1066 fois

Messages : 11328

Enregistré le : 30 juil. 2008 16:59

Classe : Dr.-Ing

Re: Pendules couplés dans le cas non linéaire

Message par fakbill » 28 mai 2015 15:46

non mais bon on ne va pas se taper la lecture de ton code!

Ton signal avant FFT ressemble à quoi? S'il n'est pas centré autour de 0, alors il s'écrit "C + un machin" donc c'est normal d'avoir un beau pic en 0 (la constante à une fréquence nulle).

Qu'est ce que tu essayes de faire exactement? Je me tape de ton code, je voudrais que tu nous expliques ce que tu simules exactement, ce que tu as compris de la théorie et donc ce à quoi devrait ressembler tes résultats (et donc pourquoi tu fais un FFT et pas une transformée de trucbidule ou je ne sais quoi).

Comme on dit dans certaines régions : "de quoi c'est ty qu'on cause???"
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Messages : 9

Enregistré le : 26 mai 2015 23:43

Classe : MP

Re: Pendules couplés dans le cas non linéaire

Message par archer » 28 mai 2015 15:54

Pour le code ok j'ai compris!

J'ai choisi un de mes 20 pendules et j'ai essayé sans raisons valblesde faire une FFT de son angle theta(t). La non linéarité provient du moment du poids qui est en sin(theta). J'observe des figures similaires à ce qui est en dessus. Un pic proche de zéro et des petites perturbations. Je ne comprends pas pourquoi?

D'après ce que j'ai compris, FPU s'attendait à ce que les énergies moyennes dans les différents modes soient identiques pour vérifier l'hypothèse d'ergodicité (c'est dans ce sens que je comprend le terme ergodicité,c'est juste ou pas?)


Je ne sais pas toujours ce que je devrais observer si je fais une FFT des positions angulaires des pendules.
Je pensais qu'on devrait plutôt représenter les énergies projetés dans les différents modes propres. Je ne sais pas comment faire
Je suis entrain d'essayer de representer mon signal avant avant FFT ( je sais toujours pas si mon programme il est correct)

Messages : 11328

Enregistré le : 30 juil. 2008 16:59

Classe : Dr.-Ing

Re: Pendules couplés dans le cas non linéaire

Message par fakbill » 28 mai 2015 17:04

non. Relis la théorie pour comprendre ce que "ergodique" veut dire (comment c'est *défini*).

As tu lu ca?? http://www.physics.utah.edu/~detar/phys ... rs1965.pdf
C'est un peu délicat de comprendre ce qu'ils attendaient de cette expérience sans jamais avoir fait de physique statistique...mais c'est un article parfaitement lisible pour un taupin avec un peu d'effort.
Je suppose qu'on trouve des description plus "modernes" de cette expérience facilement avec google...probablement même le code qui va avec....par contre, pour l'interprétation physique, il faut lire un peu de phy stat pour comprendre ce que "ergodique" veut dire.

Ce n'est pas en simulant je ne sais trop quoi sans trop savoir pourquoi ni comment ni ce que tu dois obtenir que ca va donner un TIPE ;)
Pas prof.
Prépa, école, M2, thèse (optique/images) ->ingé dans le privé.

Répondre