J'aimerai prouver que si on a Pn (Pn correspond qu polynome de Legendre de degré n en normalisant P0(x)=1 avec la formule de Rodrigues) alors pour tout polynome Q de degré au plus n-1, intégrale de -1 à 1 de Pn(t)Q(t)dt=0.
Je l'ai réussi en montrant que les (Pk) 0<k<n+1 forment une base orthogonale de Rn[X] et donc Q=Vect(Pk)
Cependant, on m'a dit qu'il existait une autre manière sans utiliser d'algèbre mais je ne sais pas comment faire. Merci
