Message
par kakille » 18 juil. 2018 11:00
Bonjour,
voici un exercice que je trouve difficile sans indication, même s'il reste strictement dans le programme de première année. Pour l'instant, je le donne sec.
Soit $ d $ un entier naturel $ \geq 1 $. On note $ (\varepsilon_1,\ldots,\varepsilon_d) $ la base canonique de $ \mathbb{R}^d $.
Une fonction $ f:\mathbb{Z}^d \to \mathbb{R} $ est dite harmonique sur $ \mathbb{Z}^d $ si pour tout $ z $ dans $ \mathbb{Z}^d $, on a
$
f(z)=\frac{1}{2d}\sum_{i=1}^d f(z+\varepsilon_i)+f(z-\varepsilon_i)
$
(ie la valeur de $ f $ en tout point est égale à la moyenne de ses valeurs au $ 2d $ plus proches voisins euclidiens.)
Démontrer qu'une fonction harmonique et bornée sur $ \mathbb{Z}^d $ est constante.
"[...] On dira que le nombre $ L $ est limite de cette suite, si, pour tout nombre réel donné $ \varepsilon $, si petit soit-il, il existe un nombre entier $ n $ tel que l'ont ait $ |L−S_n|<\varepsilon $."
Alain Badiou, Eloge des mathématiques.