Message
par Goibniu » 22 avr. 2017 12:49
Le rapport de concentration trouvé à la question b) est correct. Il y a bien un moyen un peu moins calculatoire de trouver cette réponse.
A l'état initial, $ [Mg^{2+}] = [Ca^{2+}] = 10^{-3}~mol/L $ et $ [Y^{4-}] = 10^{-2}~mol/L $ donc $ pY = 2 $
D'après la question a), le système est alors situé dans le domaine de prédominance des complexes $ MgY^{2-} $ et $ CaY^{2-} $. Comme $ Y^{4-} $ est situé en excès par rapport aux deux cations, on peut donc supposer que les deux réactions de complexation sont totales et que les deux cations sont les réactifs limitants. D'où $ [MgY^{2-}] \approx 10^{-3}~mol/L $ et $ [CaY^{2-}] \approx 10^{-3}~mol/L $.
L'hypothèse précédente doit être vérifiée. Si les deux réactions de complexation sont totales, alors la concentration finale en $ Y^{4-} $ libre est égale à $ 8.10^{-3}~mol/L $ et $ pY = 2,1 $. La valeur de $ pY $ a légèrement augmentée mais se situe toujours très largement dans le domaine de prédominance des deux complexes. Cela justifie que le magnésium et le calcium soit quasiment totalement sous la forme de complexe avec l'EDTA.
Pour trouver le rapport $ [Mg^{2+}]/[Ca^{2+}] $, on peut ensuite exprimer le rapport $ K_{f,1}/K_{f,2} $ :
$ \frac{K_{f,1}}{K_{f,2}} = \frac{[CaY^{2-}]}{[MgY^{2-}]} \times \frac{[Mg^{2+}]}{[Ca^{2+}]} \times \frac{[Y^{4-}]}{[Y^{4-}]} $
$ \frac{K_{f,1}}{K_{f,2}} = \frac{[Mg^{2+}]}{[Ca^{2+}]} $ car $ [CaY^{2-}] = [MgY^{2-}] $ à l'équilibre
$ 100 = \frac{[Mg^{2+}]}{[Ca^{2+}]} $