Préparant ma rentrée en spé, je fais face a un exercice d’apparence facile qui ne se laisse pas avoir :
Il s’agit de montrer que
Soit n ∈ ℕ et f ∈ C^0([a,b],ℝ), si
$ \int_{a}^{b} f(x)t^k \, \mathrm{d}x $ = 0 ∀ k ∈ [|0,n|], alors f s’annule au moins n+1 fois sur [a,b]
Sachant que : le cas n = 0 est triviale, le cas n = 1 est facile par l’absurde. Mais je n’arrive pas a généraliser (par récurrence ?).
Merci d’avance de votre aide I
