j'ai besoin d'un peu d'aide concernant cet exercice :
Ma première idée consiste à exploiter le fait que $ \sum_{n,m=0}^{\infty} P(\{X=n\}\cap\{Y=m\}) = 1 $.Soit $ (X,Y) $ un couple aléatoire à valeurs dans $ \mathbb{N}^2 $ de loi définie par $ P(\{X=n\}\cap\{Y=m\})=\dfrac{a}{(n+m+1)!} $.
Déterminer $ a $.
Est-ce la bonne démarche ? Si oui, comment calculer cette somme (je ne suis pas très à l'aise avec les séries doubles) ?
Merci
